scholarly journals Type III Secretion-Dependent Modulation of Innate Immunity as One of Multiple Factors Regulated by Pseudomonas aeruginosa RetS

2006 ◽  
Vol 74 (7) ◽  
pp. 3880-3889 ◽  
Author(s):  
Irandokht Zolfaghar ◽  
David J. Evans ◽  
Reza Ronaghi ◽  
Suzanne M. J. Fleiszig

ABSTRACT Mutation of retS (rtsM) of Pseudomonas aeruginosa strain PA103 reduces its virulence in both ocular and respiratory murine models of infection. In vitro, retS mutants exhibit loss of the ExsA-regulated type III secretion system (TTSS), reduced twitching motility, and a decrease in association with, invasion of, and survival within corneal epithelial cells. In addition, transcription of multiple other virulence genes is positively and negatively affected by retS mutation. Since our published data show that ExoU and ExoT, the two TTSS effectors encoded by strain PA103, each confer virulence in this corneal model, we hypothesized that loss of virulence of retS mutants follows loss of type III secretion. Corneal pathology, bacterial colonization, and phagocyte infiltration were compared for wild-type PA103, retS mutants, and various TTSS mutants after infection with ∼106 CFU bacteria. Results showed that either a retS or an exsA (TTSS) mutation delayed disease progression, as illustrated by reduced severity scores and colonization levels during the first 48 h postinfection. Surprisingly, retS mutant infections then became more severe than those involving exsA mutants. By day 7, colonization levels of retS mutants even surpassed those of wild-type bacteria (more than twofold, P = 0.028). Although retS mutants caused more severe opacification of central corneas than both the wild type and the exsA mutants, neither mutant caused the peripheral ring opacity commonly associated with wild-type infection, suggesting that the TTSS was involved. Histological experiments with retS and various TTSS mutants showed that ring opacification required ExoU but not ExoT and that it consisted of dense polymorphonuclear phagocyte infiltration at the corneal periphery and the absence of any cell type in the central cornea. These data suggest that these P. aeruginosa TTSS effectors have different effects on innate immunity and that RetS influences virulence beyond its effects on the TTSS.

2004 ◽  
Vol 72 (3) ◽  
pp. 1383-1390 ◽  
Author(s):  
Arne Rietsch ◽  
Matthew C. Wolfgang ◽  
John J. Mekalanos

ABSTRACT The type III secretion system is a dedicated machinery used by many pathogens to deliver toxins directly into the cytoplasm of a target cell. Expression and secretion of the type III effectors are triggered by cell contact. In Pseudomonas aeruginosa and Yersinia spp., expression can be triggered in vitro by removing calcium from the medium. The mechanism underlying either mode of regulation is unclear. Here we characterize a transposon insertion mutant of P. aeruginosa PAO1 that displays a marked defect in cytotoxicity. The insertion is located upstream of several genes involved in histidine utilization and impedes the ability of PAO1 to intoxicate eukaryotic cells effectively in a type III-dependent fashion. This inhibition depends on the presence of histidine in the medium and appears to depend on the excessive uptake and catabolism of histidine. The defect in cytotoxicity is mirrored by a decrease in exoS expression. Other parameters such as growth or piliation are unaffected. The cytotoxicity defect is partially complemented by an insertion mutation in cbrA that also causes overexpression of cbrB. The cbrAB two-component system has been implicated in sensing and responding to a carbon-nitrogen imbalance. Taken together, these results suggest that the metabolic state of the cell influences expression of the type III regulon.


Microbiology ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Ciara M. Shaver ◽  
Alan R. Hauser

The effector proteins of the type III secretion systems of many bacterial pathogens act in a coordinated manner to subvert host cells and facilitate the development and progression of disease. It is unclear whether interactions between the type-III-secreted proteins of Pseudomonas aeruginosa result in similar effects on the disease process. We have previously characterized the contributions to pathogenesis of the type-III-secreted proteins ExoS, ExoT and ExoU when secreted individually. In this study, we extend our prior work to determine whether these proteins have greater than expected effects on virulence when secreted in combination. In vitro cytotoxicity and anti-internalization activities were not enhanced when effector proteins were secreted in combinations rather than alone. Likewise in a mouse model of pneumonia, bacterial burden in the lungs, dissemination and mortality attributable to ExoS, ExoT and ExoU were not synergistically increased when combinations of these effector proteins were secreted. Because of the absence of an appreciable synergistic increase in virulence when multiple effector proteins were secreted in combination, we conclude that any cooperation between ExoS, ExoT and ExoU does not translate into a synergistically significant enhancement of disease severity as measured by these assays.


2006 ◽  
Vol 75 (3) ◽  
pp. 1089-1098 ◽  
Author(s):  
Vincent T. Lee ◽  
Stefan Pukatzki ◽  
Hiromi Sato ◽  
Eriya Kikawada ◽  
Anastasia A. Kazimirova ◽  
...  

ABSTRACT A number of bacterial pathogens utilize the type III secretion pathway to deliver effector proteins directly into the host cell cytoplasm. Certain strains of Pseudomonas aeruginosa associated with acute infections express a potent cytotoxin, exoenzyme U (ExoU), that is delivered via the type III secretion pathway directly into contacting host cells. Once inside the mammalian cell, ExoU rapidly lyses the intoxicated cells via its phospholipase A2 (PLA2) activity. A high-throughput cell-based assay was developed to screen libraries of compounds for those capable of protecting cells against the cytotoxic effects of ExoU. A number of compounds were identified in this screen, including one group that blocks the intracellular activity of ExoU. In addition, these compounds specifically inhibited the PLA2 activity of ExoU in vitro, whereas eukaryotic secreted PLA2 and cytosolic PLA2 were not inhibited. This novel inhibitor of ExoU-specific PLA2 activity, named pseudolipasin A, may provide a new lead for virulence factor-based therapeutic design.


2001 ◽  
Vol 69 (1) ◽  
pp. 538-542 ◽  
Author(s):  
Denis Dacheux ◽  
Ina Attree ◽  
Bertrand Toussaint

ABSTRACT Twelve Pseudomonas aeruginosa cystic fibrosis isolates that are not able to exert a type III secretion system (TTSS)-dependent cytotoxicity towards phagocytes have been further studied. The strains, although possessing TTSS genes and exsA, which encodes a positive regulator of the TTSS regulon, showed no transcriptional activation of the exsCBA regulatory operon. The expression of exsA in trans restored the in vitro secretion of TTSS proteins and ex vivo cytotoxicity.


2005 ◽  
Vol 187 (17) ◽  
pp. 6058-6068 ◽  
Author(s):  
Weihui Wu ◽  
Shouguang Jin

ABSTRACT In a search for regulatory genes of the type III secretion system (TTSS) in Pseudomonas aeruginosa, transposon (Tn5) insertional mutants of the prtR gene were found defective in the TTSS. PrtR is an inhibitor of prtN, which encodes a transcriptional activator for pyocin synthesis genes. In P. aeruginosa, pyocin synthesis is activated when PrtR is degraded during the SOS response. Treatment of a wild-type P. aeruginosa strain with mitomycin C, a DNA-damaging agent, resulted in the inhibition of TTSS activation. A prtR/prtN double mutant had the same TTSS defect as the prtR mutant, and complementation by a prtR gene but not by a prtN gene restored the TTSS function. Also, overexpression of the prtN gene in wild-type PAK had no effect on the TTSS; thus, PrtN is not involved in the repression of the TTSS. To identify the PrtR-regulated TTSS repressor, another round of Tn mutagenesis was carried out in the background of a prtR/prtN double mutant. Insertion in a small gene, designated ptrB, restored the normal TTSS activity. Expression of ptrB is specifically repressed by PrtR, and mitomycin C-mediated suppression of the TTSS is also abolished in a ptrB mutant strain. Therefore, PtrB is a new TTSS repressor that coordinates TTSS repression and pyocin synthesis under the stress of DNA damage.


1999 ◽  
Vol 67 (10) ◽  
pp. 5530-5537 ◽  
Author(s):  
Alan R. Hauser ◽  
Joanne N. Engel

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on macrophages, we infected J774A.1 cells and primary bone-marrow-derived murine macrophages with the P. aeruginosa strain PA103 in vitro. PA103 caused type-III-secretion-dependent killing of macrophages within 2 h of infection. Only a portion of the killing required the putative cytotoxin ExoU. By three criteria, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assays, cytoplasmic nucleosome assays, and Hoechst staining, the ExoU-independent but type-III-secretion-dependent killing exhibited features of apoptosis. Extracellular bacteria were capable of inducing apoptosis, and some laboratory and clinical isolates of P. aeruginosa induced significantly higher levels of this form of cell death than others. Interestingly, HeLa cells but not Madin-Darby canine kidney cells were susceptible to type-III-secretion-mediated apoptosis under the conditions of these assays. These findings are consistent with a model in which the P. aeruginosa type III secretion system transports at least two factors that kill macrophages: ExoU, which causes necrosis, and a second, as yet unidentified, effector protein, which induces apoptosis. Such killing may contribute to the ability of this organism to persist and disseminate within infected patients.


2004 ◽  
Vol 186 (13) ◽  
pp. 4056-4066 ◽  
Author(s):  
Kimberly A. Walker ◽  
Virginia L. Miller

ABSTRACT Yersinia enterocolitica biovar 1B contains two type III secretion systems (TTSSs), the plasmid-encoded Ysc-Yop system and the chromosomally encoded Ysa-Ysp system. Proteins secreted from the Ysa TTSS (Ysps) have only been detected in vitro when cells are cultured at 26°C in a high-NaCl medium. However, the exact role of the Ysa TTSS is unclear. Thus, investigations into the regulation of this system may help elucidate the role of the Ysps during the life cycle of Y. enterocolitica. Here we present evidence that the AraC-like regulator YsaE acts together with the chaperone SycB to regulate transcription of the sycByspBCDA operon, a phenomenon similar to that seen in the closely related Salmonella SPI-1 and Shigella flexneri Mxi-Spa-Ipa TTSSs. Deletion of either sycB or ysaE results in a twofold reduction in the activity of a sycB-lacZ fusion compared to the wild type. In a reconstituted Escherichia coli system, transcription of sycB was activated sixfold only when both YsaE and SycB were present, demonstrating that they are necessary for activation. ysrR and ysrS are located near the ysa genes and encode a putative two-component regulatory system. Mutations in either gene indicated that both YsrR and YsrS were required for secretion of Ysps. In addition, transcription from sycB-lacZ and ysaE-lacZ fusions was decreased 6.5- and 25-fold, respectively, in the ysrS mutant compared to the wild type. Furthermore, in the absence of NaCl, the activity of ysaE-lacZ was reduced 25-fold in the wild-type and ΔysrS strains, indicating that YsrS is probably required for the salt-dependent expression of the ysa locus. These results suggest that the putative two-component system YsrRS may be a key element in the regulatory cascade for the Ysa TTSS.


Vaccines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 57 ◽  
Author(s):  
Lisa Ryan ◽  
Jichuan Wu ◽  
Kyell Schwartz ◽  
Sunghan Yim ◽  
Gill Diamond

β-defensins are predicted to play an important role in innate immunity against bacterial infections in the airway. We previously observed that a type III-secretion product of Bordetella bronchiseptica inhibits the NF-κB-mediated induction of a β-defensin in airway epithelial cells in vitro. To confirm this in vivo and to examine the relative roles of other β-defensins in the airway, we infected wild-type C57BL/6 mice and mice with a deletion of the mBD-1 gene with B. bronchiseptica wild-type strain, RB50 and its mutant strain lacking the type III-secretion system, WD3. The bacteria were quantified in the trachea and the nasal tissue and mRNA levels of mouse β-defensin-3 (mBD-3) were assessed after 24 h. Infection with the wild-type bacterial strain resulted in lower mBD-3 mRNA levels in the trachea than in mice infected with the type III-deficient strain. Furthermore, we observed an increase in bacterial numbers of RB50 only in the tracheas of mBD-1-deficient mice. Neutrophils were also more abundant on the trachea in RB50 infected WT mice but not in the bronchiolar lavage fluid (BAL), compared with WD3 infected WT and mBD-1−/− mice, indicating that the coordination of β-defensin chemotactic effects may be confined to tracheal epithelial cells (TEC). RB50 decreased the ability of mice to mount an early specific antibody response, seven days after infection in both WT and mBD-1−/− mice but there were no differences in titers between RB50-infected WT and mBD-1−/− mice or between WD3-infected WT and mBD-1−/− mice, indicating mBD-1 was not involved in induction of the humoral immune response to the B. bronchiseptica. Challenge of primary mouse TEC in vitro with RB50 and WD3, along with IL-1β, further corroborated the in vivo studies. The results demonstrate that at least two β-defensins can coordinate early in an infection to limit the growth of bacteria in the trachea.


2007 ◽  
Vol 189 (8) ◽  
pp. 3124-3132 ◽  
Author(s):  
Chantal Soscia ◽  
Abderrahman Hachani ◽  
Alain Bernadac ◽  
Alain Filloux ◽  
Sophie Bleves

ABSTRACT Pseudomonas aeruginosa cytotoxicity is linked to a type III secretion system (T3SS) that delivers effectors into the host cell. We show here that a negative cross-control exists between T3SS and flagellar assembly. We observed that, in a strain lacking flagella, T3SS gene expression, effector secretion, and cytotoxicity were increased. Conversely, we revealed that flagellar-gene expression and motility were decreased in a strain overproducing ExsA, the T3SS master regulator. Interestingly, a nonmotile strain lacking the flagellar filament (ΔfliC) presented a hyperefficient T3SS and a nonmotile strain assembling flagella (ΔmotAB) did not. More intriguingly, a strain lacking motCD genes is a flagellated strain with a slight defect in swimming. However, in this strain, T3SS gene expression was up-regulated. These results suggest that flagellar assembly and/or mobility antagonizes the T3SS and that a negative cross talk exists between these two systems. An illustration of this is the visualization by electron microscopy of T3SS needles in a nonmotile P. aeruginosa strain, needles which otherwise are not detected. The molecular basis of the cross talk is complex and remains to be elucidated, but proteins like MotCD might have a crucial role in signaling between the two processes. In addition, we found that the GacA response regulator negatively affects the T3SS. In a gacA mutant, the T3SS effector ExoS is hypersecreted. Strikingly, GacA was previously reported as a positive regulator for motility. Globally, our data document the idea that some virulence factors are coordinately but inversely regulated, depending on the bacterial colonization phase and infection types.


2007 ◽  
Vol 189 (6) ◽  
pp. 2203-2209 ◽  
Author(s):  
D. K. Augustin ◽  
Y. Song ◽  
M. S. Baek ◽  
Y. Sawa ◽  
G. Singh ◽  
...  

ABSTRACT Pseudomonas aeruginosa is one of the major causative agents of mortality and morbidity in hospitalized patients due to a multiplicity of virulence factors associated with both chronic and acute infections. Acute P. aeruginosa infection is primarily mediated by planktonic bacteria expressing the type III secretion system (TTSS), a surface-attached needle-like complex that injects cytotoxins directly into eukaryotic cells, causing cellular damage. Lipopolysaccharide (LPS) is the principal surface-associated virulence factor of P. aeruginosa. This molecule is known to undergo structural modification (primarily alterations in the A- and B-band O antigen) in response to changes in the mode of life (e.g., from biofilm to planktonic). Given that LPS exhibits structural plasticity, we hypothesized that the presence of LPS lacking O antigen would facilitate eukaryotic intoxication and that a correlation between the LPS O-antigen serotype and TTSS-mediated cytotoxicity would exist. Therefore, strain PAO1 (A+ B+ O-antigen serotype) and isogenic mutants with specific O-antigen defects (A+ B−, A− B+, and A− B−) were examined for TTSS expression and cytotoxicity. A strong association existed in vitro between the absence of the large, structured B-band O antigen and increased cytotoxicity of these strains. In vivo, all three LPS mutant strains demonstrated significantly increased lung injury compared to PAO1. Clinical strains lacking the B-band O antigen also demonstrated increased TTSS secretion. These results suggest the existence of a cooperative association between LPS O-antigen structure and the TTSS in both laboratory and clinical isolates of P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document