scholarly journals Disease-Associated Neisseria meningitidis Isolates Inhibit Wound Repair in Respiratory Epithelial Cells in a Type IV Pilus-Independent Manner

2014 ◽  
Vol 82 (12) ◽  
pp. 5023-5034 ◽  
Author(s):  
Xiaoyun Ren ◽  
Joanna K. MacKichan

ABSTRACTNeisseria meningitidisis the causative agent of meningococcal disease. Onset of meningococcal disease can be extremely rapid and can kill within a matter of hours. However, although a much-feared pathogen,Neisseria meningitidisis frequently found in the nasopharyngeal mucosae of healthy carriers. The bacterial factors that distinguish disease- from carriage-associated meningococci are incompletely understood. Evidence suggesting that disruptions to the nasopharynx may increase the risk of acquiring meningococcal disease led us to evaluate the ability of disease- and carriage-associated meningococcal isolates to inhibit cell migration, using anin vitroassay for wound repair. We found that disease-associated isolates in our collection inhibited wound closure, while carriage-associated isolates were more variable, with many isolates not inhibiting wound repair at all. For isolates selected for further study, we found that actin morphology, such as presence of lamellipodia, correlated with cell migration. We demonstrated that multiple meningococcal virulence factors, including the type IV pili, are dispensable for inhibition of wound repair. Inhibition of wound repair was also shown to be an active process, i.e., requiring live bacteria undergoing active protein synthesis.

2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Alessandra Facchetti ◽  
Jun X. Wheeler ◽  
Caroline Vipond ◽  
Gail Whiting ◽  
Hayley Lavender ◽  
...  

During an outbreak of invasive meningococcal disease (IMD) at the University of Southampton, UK, in 1997, two Neisseria meningitidis serogroup C isolates were retrieved from a student (‘Case’), who died of IMD, and a close contact (‘Carrier’) who, after mouth-to-mouth resuscitation on the deceased, did not contract the disease. Genomic comparison of the isolates demonstrated extensive nucleotide sequence identity, with differences identified in eight genes. Here, comparative proteomics was used to measure differential protein expression between the isolates and investigate whether the differences contributed to the clinical outcomes. A total of six proteins were differentially expressed: four proteins (methylcitrate synthase, PrpC; hypothetical integral membrane protein, Imp; fructose-1,6-bisphosphate aldolase, Fba; aldehyde dehydrogenase A, AldA) were upregulated in the Case isolate, while one protein (Type IV pilus-associated protein, PilC2) was downregulated. Peptides for factor H binding protein (fHbp), a major virulence factor and antigenic protein, were only detected in the Case, with a single base deletion (ΔT366) in the Carrier fHbp causing lack of its expression. Expression of fHbp resulted in an increased resistance of the Case isolate to complement-mediated killing in serum. Complementation of fHbp expression in the Carrier increased its serum resistance by approximately 8-fold. Moreover, a higher serum bactericidal antibody titre was seen for the Case isolate when using sera from mice immunized with Bexsero (GlaxoSmithKline), a vaccine containing fHbp as an antigenic component. This study highlights the role of fHbp in the differential complement resistance of the Case and the Carrier isolates. Expression of fHbp in the Case resulted in its increased survival in serum, possibly leading to active proliferation of the bacteria in blood and death of the student through IMD. Moreover, enhanced killing of the Case isolate by sera raised against an fHbp-containing vaccine, Bexsero, underlines the role and importance of fHbp in infection and immunity.


2013 ◽  
Vol 141 (10) ◽  
pp. 2163-2172 ◽  
Author(s):  
X. SUN ◽  
H. ZHOU ◽  
L. XU ◽  
H. YANG ◽  
Y. GAO ◽  
...  

SUMMARYThe main Neisseria meningitidis adhesion molecules, type IV pili (Tfp) and Neisseria adhesion A (NadA), play important roles in the pathogenesis of invasive meningococcal disease. PilE is the major Tfp subunit. In this study, the prevalence and genetic diversity of pilE and nadA were investigated in the prevalent serogroups and clonal complexes (CC) of N. meningitidis isolated in China. All serogroup A strains belonging to CC1 and CC5 and all CC11 serogroup W135 strains were clustered into class II PilE clades. All serogroup C and most of serogroup B isolates except CC8 and ST5642 were class I PilE clades. Class II pilE sequences were highly conserved. All isolates belonging to class I PilE isolates were nadA negative. However, nadA-positive strains were exclusively found in CC5 and CC11 isolates (class II PilE). This study showed that PilE and NadA may be related to epidemic or endemic meningococcal disease.


2015 ◽  
Vol 197 (24) ◽  
pp. 3788-3796 ◽  
Author(s):  
Takayuki Kuge ◽  
Haruhiko Teramoto ◽  
Masayuki Inui

ABSTRACTInCorynebacterium glutamicumATCC 31831, a LacI-type transcriptional regulator AraR, represses the expression ofl-arabinose catabolism (araBDA), uptake (araE), and the regulator (araR) genes clustered on the chromosome. AraR binds to three sites: one (BSB) between the divergent operons (araBDAandgalM-araR) and two (BSE1and BSE2) upstream ofaraE.l-Arabinose acts as an inducer of the AraR-mediated regulation. Here, we examined the roles of these AraR-binding sites in the expression of the AraR regulon. BSBmutation resulted in derepression of botharaBDAandgalM-araRoperons. The effects of BSE1and/or BSE2mutation onaraEexpression revealed that the two sites independently function as theciselements, but BSE1plays the primary role. However, AraR was shown to bind to these sites with almost the same affinityin vitro. Taken together, the expression ofaraBDAandaraEis strongly repressed by binding of AraR to a single site immediately downstream of the respective transcriptional start sites, whereas the binding site overlapping the −10 or −35 region of thegalM-araRandaraEpromoters is less effective in repression. Furthermore, downregulation ofaraBDAandaraEdependent onl-arabinose catabolism observed in the BSBmutant and the AraR-independentaraRpromoter identified withingalM-araRadd complexity to regulation of the AraR regulon derepressed byl-arabinose.IMPORTANCECorynebacterium glutamicumhas a long history as an industrial workhorse for large-scale production of amino acids. An important aspect of industrial microorganisms is the utilization of the broad range of sugars for cell growth and production process. MostC. glutamicumstrains are unable to use a pentose sugarl-arabinose as a carbon source. However, genes forl-arabinose utilization and its regulation have been recently identified inC. glutamicumATCC 31831. This study elucidates the roles of the multiple binding sites of the transcriptional repressor AraR in the derepression byl-arabinose and thereby highlights the complex regulatory feedback loops in combination withl-arabinose catabolism-dependent repression of the AraR regulon in an AraR-independent manner.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Sandeep J. Joseph ◽  
Nadav Topaz ◽  
How-Yi Chang ◽  
Melissa J. Whaley ◽  
Jeni T. Vuong ◽  
...  

ABSTRACT In 2015 and 2016, meningococcal carriage evaluations were conducted at two universities in the United States following mass vaccination campaigns in response to Neisseria meningitidis serogroup B (NmB) disease outbreaks. A simultaneous carriage evaluation was also conducted at a university near one of the outbreaks, where no NmB cases were reported and no mass vaccination occurred. A total of ten cross-sectional carriage evaluation rounds were conducted, resulting in 1,514 meningococcal carriage isolates collected from 7,001 unique participants; 1,587 individuals were swabbed at multiple time points (repeat participants). All isolates underwent whole-genome sequencing. The most frequently observed clonal complexes (CC) were CC198 (27.3%), followed by CC1157 (17.4%), CC41/44 (9.8%), CC35 (7.4%), and CC32 (5.6%). Phylogenetic analysis identified carriage isolates that were highly similar to the NmB outbreak strains; comparative genomics between these outbreak and carriage isolates revealed genetic changes in virulence genes. Among repeat participants, 348 individuals carried meningococcal bacteria during at least one carriage evaluation round; 50.3% retained N. meningitidis carriage of a strain with the same sequence type (ST) and CC across rounds, 44.3% only carried N. meningitidis in one round, and 5.4% acquired a new N. meningitidis strain between rounds. Recombination, point mutations, deletions, and simple sequence repeats were the most frequent genetic mechanisms found in isolates collected from hosts carrying a strain of the same ST and CC across rounds. Our findings provide insight on the dynamics of meningococcal carriage among a population that is at higher risk for invasive meningococcal disease than the general population. IMPORTANCE U.S. university students are at a higher risk of invasive meningococcal disease than the general population. The responsible pathogen, Neisseria meningitidis, can be carried asymptomatically in the oropharynx; the dynamics of meningococcal carriage and the genetic features that distinguish carriage versus disease states are not completely understood. Through our analyses, we aimed to provide data to address these topics. We whole-genome sequenced 1,514 meningococcal carriage isolates from individuals at three U.S. universities, two of which underwent mass vaccination campaigns following recent meningococcal outbreaks. We describe the within-host genetic changes among individuals carrying a strain with the same molecular type over time, the primary strains being carried in this population, and the genetic differences between closely related outbreak and carriage strains. Our results provide detailed information on the dynamics of meningococcal carriage and the genetic differences in carriage and outbreak strains, which can inform future efforts to reduce the incidence of invasive meningococcal disease.


2012 ◽  
Vol 194 (18) ◽  
pp. 5144-5145 ◽  
Author(s):  
Sabine Schork ◽  
Andreas Schlüter ◽  
Jochen Blom ◽  
Susanne Schneiker-Bekel ◽  
Alfred Pühler ◽  
...  

ABSTRACTNeisseria meningitidisis a commensal and accidental pathogen exclusively of humans. Although the production of polysaccharide capsules is considered to be essential for meningococcal virulence, there have been reports of constitutively unencapsulated strains causing invasive meningococcal disease (IMD). Here we report the genome sequence of a capsule null locus (cnl) strain of sequence type 198 (ST-198), which is found in half of the reported cases of IMD caused bycnlmeningococcal strains.


2007 ◽  
Vol 189 (15) ◽  
pp. 5716-5727 ◽  
Author(s):  
Seetha V. Balasingham ◽  
Richard F. Collins ◽  
Reza Assalkhou ◽  
Håvard Homberset ◽  
Stephan A. Frye ◽  
...  

ABSTRACT Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.


2011 ◽  
Vol 55 (9) ◽  
pp. 4154-4160 ◽  
Author(s):  
Sandra S. Richter ◽  
Kristopher P. Heilmann ◽  
Cassie L. Dohrn ◽  
Fathollah Riahi ◽  
Andrew J. Costello ◽  
...  

ABSTRACTAStaphylococcus aureussurveillance program was initiated in the United States to examine thein vitroactivity of ceftaroline and epidemiologic trends. Susceptibility testing by Clinical and Laboratory Standards Institute broth microdilution was performed on 4,210 clinically significant isolates collected in 2009 from 43 medical centers. All isolates were screened formecAby PCR and evaluated by pulsed-field gel electrophoresis. Methicillin-resistantS. aureus(MRSA) were analyzed for Panton-Valentine leukocidin (PVL) genes and the staphylococcal cassette chromosomemec(SCCmec) type. All isolates had ceftaroline MICs of ≤2 μg/ml with an MIC50of 0.5 and an MIC90of 1 μg/ml. The overall resistance rates, expressed as the percentages of isolates that were intermediate and resistant (or nonsusceptible), were as follows: ceftaroline, 1.0%; clindamycin, 30.2% (17.4% MIC ≥ 4 μg/ml; 12.8% inducible); daptomycin, 0.2%; erythromycin, 65.5%; levofloxacin, 39.9%; linezolid, 0.02%; oxacillin, 53.4%; tetracycline, 4.4%; tigecycline, 0%; trimethoprim-sulfamethoxazole, 1.6%; vancomycin, 0%; and high-level mupirocin, 2.2%. ThemecAPCR was positive for 53.4% of the isolates. The ceftaroline MIC90s were 0.25 μg/ml for methicillin-susceptibleS. aureusand 1 μg/ml for MRSA. Among the 2,247 MRSA isolates, 51% were USA300 (96.9% PVL positive, 99.7% SCCmectype IV) and 17% were USA100 (93.4% SCCmectype II). The resistance rates for the 1,137 USA300 MRSA isolates were as follows: erythromycin, 90.9%; levofloxacin, 49.1%; clindamycin, 7.6% (6.2% MIC ≥ 4 μg/ml; 1.4% inducible); tetracycline, 3.3%; trimethoprim-sulfamethoxazole, 0.8%; high-level mupirocin, 2.7%; daptomycin, 0.4%; and ceftaroline and linezolid, 0%. USA300 is the dominant clone causing MRSA infections in the United States. Ceftaroline demonstrated potentin vitroactivity against recentS. aureusclinical isolates, including MRSA, daptomycin-nonsusceptible, and linezolid-resistant strains.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Yoon-Suk Kang ◽  
James E. Kirby

ABSTRACT We established a new Brucella neotomae in vitro model system for study of type IV secretion system-dependent (T4SS) pathogenesis in the Brucella genus. Importantly, B. neotomae is a rodent pathogen, and unlike B. abortus, B. melitensis, and B. suis, B. neotomae has not been observed to infect humans. It therefore can be handled more facilely using biosafety level 2 practices. More particularly, using a series of novel fluorescent protein and lux operon reporter systems to differentially label pathogens and track intracellular replication, we confirmed T4SS-dependent intracellular growth of B. neotomae in macrophage cell lines. Furthermore, B. neotomae exhibited early endosomal (LAMP-1) and late endoplasmic reticulum (calreticulin)-associated phagosome maturation. These findings recapitulate prior observations for human-pathogenic Brucella spp. In addition, during coinfection experiments with Legionella pneumophila, we found that defective intracellular replication of a B. neotomae T4SS virB4 mutant was rescued and baseline levels of intracellular replication of wild-type B. neotomae were significantly stimulated by coinfection with wild-type but not T4SS mutant L. pneumophila. Using confocal microscopy, it was determined that intracellular colocalization of B. neotomae and L. pneumophila was required for rescue and that colocalization came at a cost to L. pneumophila fitness. These findings were not completely expected based on known temporal and qualitative differences in the intracellular life cycles of these two pathogens. Taken together, we have developed a new system for studying in vitro Brucella pathogenesis and found a remarkable T4SS-dependent interplay between Brucella and Legionella during macrophage coinfection.


2016 ◽  
Vol 84 (5) ◽  
pp. 1501-1513 ◽  
Author(s):  
Jakob Engman ◽  
Aurel Negrea ◽  
Sara Sigurlásdóttir ◽  
Miriam Geörg ◽  
Jens Eriksson ◽  
...  

Neisseria meningitidisautoaggregation is an important step during attachment to human cells. Aggregation is mediated by type IV pili and can be modulated by accessory pilus proteins, such as PilX, and posttranslational modifications of the major pilus subunit PilE. The mechanisms underlying the regulation of aggregation remain poorly characterized. Polynucleotide phosphorylase (PNPase) is a 3′–5′ exonuclease that is involved in RNA turnover and the regulation of small RNAs. In this study, we biochemically confirm that NMC0710 is theN. meningitidisPNPase, and we characterize its role inN. meningitidispathogenesis. We show that deletion of the gene encoding PNPase leads to hyperaggregation and increased adhesion to epithelial cells. The aggregation induced was found to be dependent on pili and to be mediated by excessive pilus bundling. PNPase expression was induced following bacterial attachment to human cells. Deletion of PNPase led to global transcriptional changes and the differential regulation of 469 genes. We also demonstrate that PNPase is required for full virulence in anin vivomodel ofN. meningitidisinfection. The present study shows that PNPase negatively affects aggregation, adhesion, and virulence inN. meningitidis.


Sign in / Sign up

Export Citation Format

Share Document