scholarly journals Modification of the CpsA Protein Reveals a Role in Alteration of the Streptococcus agalactiae Cell Envelope

2015 ◽  
Vol 83 (4) ◽  
pp. 1497-1506 ◽  
Author(s):  
Hannah M. Rowe ◽  
Brett R. Hanson ◽  
Donna L. Runft ◽  
Qian Lin ◽  
Steve M. Firestine ◽  
...  

The bacterial cell envelope is a crucial first line of defense for a systemic pathogen, with production of capsular polysaccharides and maintenance of the peptidoglycan cell wall serving essential roles in survival in the host environment. The LytR-CpsA-Psr proteins are important for cell envelope maintenance in many Gram-positive species. In this study, we examined the role of the extracellular domain of the CpsA protein of the zoonotic pathogen group BStreptococcusin capsule production and cell wall integrity. CpsA has multiple functional domains, including a DNA-binding/transcriptional activation domain and a large extracellular domain. We demonstrated that episomal expression of extracellularly truncated CpsA causes a dominant-negative effect on capsule production when expressed in the wild-type strain. Regions of the extracellular domain essential to this phenotype were identified. The dominant-negative effect could be recapitulated by addition of purified CpsA protein or a short CpsA peptide to cultures of wild-type bacteria. Changes in cell wall morphology were also observed when the dominant-negative peptide was added to wild-type cultures. Fluorescently labeled CpsA peptide could be visualized bound at the mid-cell region near the division septae, suggesting a novel role for CpsA in cell division. Finally, expression of truncated CpsA also led to attenuation of virulence in zebrafish models of infection, to levels below that of acpsAdeletion strain, demonstrating the key role of the extracellular domain in virulence of GBS.

2007 ◽  
Vol 28 (2) ◽  
pp. 825-835 ◽  
Author(s):  
Masayuki Shimizu ◽  
Yoshitaka Fukunaga ◽  
Junichi Ikenouchi ◽  
Akira Nagafuchi

ABSTRACT β-Catenin functions as a transcriptional regulator in Wnt signaling. Its function is regulated by a specific destruction system. Plakoglobin is a close homologue of β-catenin in mammalian cells and is regulated in a similar fashion. When β-catenin or plakoglobin is exogenously expressed in cells, endogenous β-catenin is stabilized, which complicates estimation of the transcriptional activities of exogenously expressed proteins. To facilitate the design of experiments aimed at investigating the transcriptional activities of β-catenin and plakoglobin, we utilized F9 cells in which we knocked out endogenous β-catenin and/or plakoglobin by gene deletion and exogenously expressed wild-type and mutant β-catenin and/or plakoglobin. We show that C-terminally deleted β-catenin, but not plakoglobin, has a strong dominant-negative effect on transcription without altering the nuclear accumulation of β-catenin. Moreover, we show that Wnt-3a activation of LEF/T-cell factor (TCF)-dependent transcription depends on β-catenin but not on plakoglobin. Using chimeras of β-catenin and plakoglobin, we demonstrate that plakoglobin has the potential to function in transcriptional regulation but is not responsible for Wnt-3a signaling in F9 cells. Our data show that preferential nuclear accumulation of β-catenin is not necessarily linked to its transcriptional activity. We also clearly demonstrate that plakoglobin is insufficient for LEF/TCF-dependent transcriptional activation by Wnt-3a in F9 cells.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


2021 ◽  
pp. 002203452199662
Author(s):  
J.T. Chen ◽  
C.H. Lin ◽  
H.W. Huang ◽  
Y.P. Wang ◽  
P.C. Kao ◽  
...  

Hereditary gingival fibromatosis (HGF) is a rare genetic disorder featured by nonsyndromic pathological overgrowth of gingiva. The excessive gingival tissues can cause dental, masticatory, and phonetic problems, which impose severe functional and esthetic burdens on affected individuals. Due to its high recurrent rate, patients with HGF have to undergo repeated surgical procedures of gingival resection, from childhood to adulthood, which significantly compromises their quality of life. Unraveling the genetic etiology and molecular pathogenesis of HGF not only gains insight into gingival physiology and homeostasis but also opens avenues for developing potential therapeutic strategies for this disorder. Recently, mutations in REST (OMIM *600571), encoding a transcription repressor, were reported to cause HGF (GINGF5; OMIM #617626) in 3 Turkish families. However, the functions of REST in gingival homeostasis and pathogenesis of REST-associated HGF remain largely unknown. In this study, we characterized 2 HGF families and identified 2 novel REST mutations, c.2449C>T (p.Arg817*) and c.2771_2793dup (p.Glu932Lysfs*3). All 5 mutations reported to date are nonsenses or frameshifts in the last exon of REST and would presumably truncate the protein. In vitro reporter gene assays demonstrated a partial or complete loss of repressor activity for these truncated RESTs. When coexpressed with the full-length protein, the truncated RESTs impaired the repressive ability of wild-type REST, suggesting a dominant negative effect. Immunofluorescent studies showed nuclear localization of overexpressed wild-type and truncated RESTs in vitro, indicating preservation of the nuclear localization signal in shortened proteins. Immunohistochemistry demonstrated a comparable pattern of ubiquitous REST expression in both epithelium and lamina propria of normal and HGF gingival tissues despite a reduced reactivity in HGF gingiva. Results of this study confirm the pathogenicity of REST truncation mutations occurring in the last exon causing HGF and suggest the pathosis is caused by an antimorphic (dominant negative) disease mechanism.


2020 ◽  
Author(s):  
Szilvia Déri ◽  
János Borbás ◽  
Teodóra Hartai ◽  
Lidia Hategan ◽  
Beáta Csányi ◽  
...  

Abstract Aims Subunit interactions at the cytoplasmic domain interface (CD-I) have recently been shown to control gating in inward rectifier potassium channels. Here we report the novel KCNJ2 variant p.Glu293Lys that has been found in a patient with Andersen–Tawil syndrome type 1 (ATS1), causing amino acid substitution at the CD-I of the inward rectifier potassium channel subunit Kir2.1. Neither has the role of Glu293 in gating control been investigated nor has a pathogenic variant been described at this position. This study aimed to assess the involvement of Glu293 in CD-I subunit interactions and to establish the pathogenic role of the p.Glu293Lys variant in ATS1. Methods and results The p.Glu293Lys variant produced no current in homomeric form and showed dominant-negative effect over wild-type (WT) subunits. Immunocytochemical labelling showed the p.Glu293Lys subunits to distribute in the subsarcolemmal space. Salt bridge prediction indicated the presence of an intersubunit salt bridge network at the CD-I of Kir2.1, with the involvement of Glu293. Subunit interactions were studied by the NanoLuc® Binary Technology (NanoBiT) split reporter assay. Reporter constructs carrying NanoBiT tags on the intracellular termini produced no bioluminescent signal above background with the p.Glu293Lys variant in homomeric configuration and significantly reduced signals in cells co-expressing WT and p.Glu293Lys subunits simultaneously. Extracellularly presented reporter tags, however, generated comparable bioluminescent signals with heteromeric WT and p.Glu293Lys subunits and with homomeric WT channels. Conclusions Loss of function and dominant-negative effect confirm the causative role of p.Glu293Lys in ATS1. Co-assembly of Kir2.1 subunits is impaired in homomeric channels consisting of p.Glu293Lys subunits and is partially rescued in heteromeric complexes of WT and p.Glu293Lys Kir2.1 variants. These data point to an important role of Glu293 in mediating subunit assembly, as well as in gating of Kir2.1 channels.


1999 ◽  
Vol 114 (5) ◽  
pp. 685-700 ◽  
Author(s):  
Thomas P. Flagg ◽  
Margaret Tate ◽  
Jean Merot ◽  
Paul A. Welling

Mutations in the inward rectifying renal K+ channel, Kir 1.1a (ROMK), have been linked with Bartter's syndrome, a familial salt-wasting nephropathy. One disease-causing mutation removes the last 60 amino acids (332–391), implicating a previously unappreciated domain, the extreme COOH terminus, as a necessary functional element. Consistent with this hypothesis, truncated channels (Kir 1.1a 331X) are nonfunctional. In the present study, the roles of this domain were systematically evaluated. When coexpressed with wild-type subunits, Kir 1.1a 331X exerted a negative effect, demonstrating that the mutant channel is synthesized and capable of oligomerization. Plasmalemma localization of Kir 1.1a 331X green fluorescent protein (GFP) fusion construct was indistinguishable from the GFP–wild-type channel, demonstrating that mutant channels are expressed on the oocyte plasma membrane in a nonconductive or locked-closed conformation. Incremental reconstruction of the COOH terminus identified amino acids 332–351 as the critical residues for restoring channel activity and uncovered the nature of the functional defect. Mutant channels that are truncated at the extreme boundary of the required domain (Kir 1.1a 351X) display marked inactivation behavior characterized by frequent occupancy in a long-lived closed state. A critical analysis of the Kir 1.1a 331X dominant negative effect suggests a molecular mechanism underlying the aberrant closed-state stabilization. Coexpression of different doses of mutant with wild-type subunits produced an intermediate dominant negative effect, whereas incorporation of a single mutant into a tetrameric concatemer conferred a complete dominant negative effect. This identifies the extreme COOH terminus as an important subunit interaction domain, controlling the efficiency of oligomerization. Collectively, these observations provide a mechanistic basis for the loss of function in one particular Bartter's-causing mutation and identify a structural element that controls open-state occupancy and determines subunit oligomerization. Based on the overlapping functions of this domain, we speculate that intersubunit interactions within the COOH terminus may regulate the energetics of channel opening.


2002 ◽  
Vol 13 (12) ◽  
pp. 4256-4265 ◽  
Author(s):  
Uriel Katz ◽  
Serge Ankri ◽  
Tamara Stolarsky ◽  
Yael Nuchamowitz ◽  
David Mirelman

The 260-kDa heterodimeric Gal/GalNAc-specific Lectin (Gal-lectin) of Entamoeba histolytica dissociates under reducing conditions into a heavy (hgl, 170 kDa) and a light subunit (lgl, 35 kDa). We have previously shown that inhibition of expression of the 35-kDa subunit by antisense RNA causes a decrease in virulence. To further understand the role of the light subunit of the Gal-lectin in pathogenesis, amoebae were transfected with plasmids encoding intact, mutated, and truncated forms of the light subunit lgl1 gene. A transfectant in which the 55 N-terminal amino acids of the lgl were removed, overproduced an N-truncated lgl protein (32 kDa), which replaced most of the native 35-kDa lgl in the formation of the Gal-lectin heterodimeric complex and exerted a dominant negative effect. Amoebae transfected with this construct showed a significant decrease in their ability to adhere to and kill mammalian cells as well as in their capacity to form rosettes with and to phagocytose erythrocytes. In addition, immunofluorescence confocal microscopy of this transfectant with anti–Gal-lectin antibodies showed an impaired ability to cap. These results indicate that the light subunit has a role in enabling the clustering of Gal-lectin complexes and that its N-truncation affects this function, which is required for virulence.


2003 ◽  
Vol 14 (8) ◽  
pp. 3400-3413 ◽  
Author(s):  
Christopher J.R. Loewen ◽  
Orson L. Moritz ◽  
Beatrice M. Tam ◽  
David S. Papermaster ◽  
Robert S. Molday

Peripherin-2 is a member of the tetraspanin family of membrane proteins that plays a critical role in photoreceptor outer segment disk morphogenesis. Mutations in peripherin-2 are responsible for various retinal degenerative diseases including autosomal dominant retinitis pigmentosa (ADRP). To identify determinants required for peripherin-2 targeting to disk membranes and elucidate mechanisms underlying ADRP, we have generated transgenic Xenopus tadpoles expressing wild-type and ADRP-linked peripherin-2 mutants as green fluorescent fusion proteins in rod photoreceptors. Wild-type peripherin-2 and P216L and C150S mutants, which assemble as tetramers, targeted to disk membranes as visualized by confocal and electron microscopy. In contrast the C214S and L185P mutants, which form homodimers, but not tetramers, were retained in the rod inner segment. Only the P216L disease mutant induced photoreceptor degeneration. These results indicate that tetramerization is required for peripherin-2 targeting and incorporation into disk membranes. Tetramerization-defective mutants cause ADRP through a deficiency in wild-type peripherin-2, whereas tetramerization-competent P216L peripherin-2 causes ADRP through a dominant negative effect, possibly arising from the introduction of a new oligosaccharide chain that destabilizes disks. Our results further indicate that a checkpoint between the photoreceptor inner and outer segments allows only correctly assembled peripherin-2 tetramers to be incorporated into nascent disk membranes.


Sign in / Sign up

Export Citation Format

Share Document