Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, withEscherichia coliresponsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABUE. colistrain VR50 was sequenced. Analysis of the complete genome indicated that it most resemblesE. coliK-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheVhas a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheVdeleted was attenuated in a mouse model of UTIin vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants.E. coliVR50afaand VR50afaEdisplayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afaand VR50afaEdisplayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheVmutant. Our study suggests thatE. coliVR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.