Influence of Enovid on the Cytopathic Action of Staphylococcal Alpha Toxin

1970 ◽  
Vol 1 (2) ◽  
pp. 157-163
Author(s):  
William Yotis ◽  
Zlatko Savov

The effect of the widely employed oral contraceptive steroid, Enovid, on the cytolytic action of the staphylococcal alpha toxin was investigated as an extension of previous studies in which it was shown that steroids were capable of suppressing induced staphylococcal infection in experimental animals. The cytotoxic action of alpha toxin for tissue cultures was evaluated by use of such parameters as total and viable cell counts, glucose and protein determination, and cytopathic effects in the presence and absence of Enovid. To 3-day-old primary rabbit baby kidney tissue cultures a mixture of 20 μg of norethynodrel per ml [17α-ethynyl-hydroxy-5(10)-estren-3-one] and 5 μg of mestranol per ml (17-ethynelestradiol-3-methyl ether) was added; growth of tissue cultures in Eagle medium was continued till the sixth day, and then one tissue cytopathic dose of alpha toxin per ml was added and the subsequent fate of tissue cultures was assayed. Such cultures yielded higher total and viable cell counts, utilized more glucose, and contained more protein than the control cultures. In control cultures, cytopathogenicity appeared on the third day after the addition of alpha toxin, and it was complete in 24 hr, whereas in tissue cultures treated with Enovid cytopathogenicity was significantly reduced. Thus the mixture of synthetic hormones known as Enovid, in pharmacological concentrations, was found capable of reducing the cytopathic action of alpha toxin, but only to a slightly lesser degree than such natural hormone as progesterone.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S643-S643
Author(s):  
Maria F Mojica ◽  
Christopher Bethel ◽  
Emilia Caselli ◽  
Magdalena A Taracila ◽  
Fabio Prati ◽  
...  

Abstract Background Catalytic mechanisms of serine β-lactamases (SBL; classes A, C and D) and metallo-β-lactamases (MBLs) have directed divergent strategies towards inhibitor design. SBL inhibitors act as high affinity substrates that -as in BATSIs- form a reversible, dative covalent bond with the conserved active site Ser. MBL inhibitors bind the active-site Zn2+ ions and displace the nucleophilic OH-. Herein, we explore the efficacy of a series of BATSI compounds with a free-thiol group at inhibiting both SBL and MBL. Methods Exploratory compounds were synthesized using stereoselective homologation of (+) pinandiol boronates to introduce the amino group on the boron-bearing carbon atom, which was subsequently acylated with mercaptopropanoic acid. Representative SBL (KPC-2, ADC-7, PDC-3 and OXA-23) and MBL (IMP-1, NDM-1 and VIM-2) were purified and used for the kinetic characterization of the BATSIs. In vitro activity was evaluated by a modified time-kill curve assay, using SBL and MBL-producing strains. Results Kinetic assays revealed that IC50 values ranged from 1.3 µM to >100 µM for this series. The best compound, s08033, demonstrated inhibitory activity against KPC-2, VIM-2, ADC-7 and PDC-3, with IC50 in the low μM range. Reduction of at least 1.5 log10-fold of viable cell counts upon exposure to sub-lethal concentrations of antibiotics (AB) + s08033, compared to the cells exposed to AB alone, demonstrated the microbiological activity of this novel compound against SBL- and MBL-producing E. coli (Table 1). Table 1 Conclusion Addition of a free-thiol group to the BATSI scaffold increases the range of these compounds resulting in a broad-spectrum inhibitor toward clinically important carbapenemases and cephalosporinases. Disclosures Robert A. Bonomo, MD, Entasis, Merck, Venatorx (Research Grant or Support)


2006 ◽  
Vol 72 (5) ◽  
pp. 3482-3488 ◽  
Author(s):  
M�nica Ordax ◽  
Ester Marco-Noales ◽  
Mar�a M. L�pez ◽  
Elena G. Biosca

ABSTRACT Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu2+ was inoculated with 107 CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chloride and SYTO 13. Culturable cells were counted on King's B nonselective solid medium. Changes in the bacterial morphology in the presence of copper were observed by scanning electron microscopy. E. amylovora entered into the VBNC state at all three copper concentrations assayed, much faster when the copper concentration increased. The addition of different agents which complex copper allowed the resuscitation (restoration of culturability) of copper-induced VBNC cells. Finally, copper-induced VBNC cells were virulent only for the first 5 days, while resuscitated cells always regained their pathogenicity on immature fruits over 9 months. These results have shown, for the first time, the induction of the VBNC state in E. amylovora as a survival strategy against copper.


2015 ◽  
Vol 12 (106) ◽  
pp. 20150069 ◽  
Author(s):  
Hiroki Takahashi ◽  
Taku Oshima ◽  
Jon L. Hobman ◽  
Neil Doherty ◽  
Selina R. Clayton ◽  
...  

Zinc is essential for life, but toxic in excess. Thus all cells must control their internal zinc concentration. We used a systems approach, alternating rounds of experiments and models, to further elucidate the zinc control systems in Escherichia coli . We measured the response to zinc of the main specific zinc import and export systems in the wild-type, and a series of deletion mutant strains. We interpreted these data with a detailed mathematical model and Bayesian model fitting routines. There are three key findings: first, that alternate, non-inducible importers and exporters are important. Second, that an internal zinc reservoir is essential for maintaining the internal zinc concentration. Third, our data fitting led us to propose that the cells mount a heterogeneous response to zinc: some respond effectively, while others die or stop growing. In a further round of experiments, we demonstrated lower viable cell counts in the mutant strain tested exposed to excess zinc, consistent with this hypothesis. A stochastic model simulation demonstrated considerable fluctuations in the cellular levels of the ZntA exporter protein, reinforcing this proposal. We hypothesize that maintaining population heterogeneity could be a bet-hedging response allowing a population of cells to survive in varied and fluctuating environments.


Author(s):  
Yash S. Raval ◽  
Abdelrhman Mohamed ◽  
Jayawant N. Mandrekar ◽  
Cody Fisher ◽  
Kerryl E. Greenwood-Quaintance ◽  
...  

Wound infections are caused by bacteria and/or fungi. The presence of fungal biofilms in wound beds presents a unique challenge, as fungal biofilms may be difficult to eradicate. The goal of this work was to assess the in vitro anti-biofilm activity of a H 2 O 2 -producing electrochemical bandage (e-bandage) against 15 yeast isolates representing commonly-encountered species. Time-dependent decreases in viable biofilm CFU counts of all isolates tested were observed, resulting in no visible colonies with 48 hours of exposure by plate culture. Fluorescence microscopic analysis showed extensive cell membrane damage of biofilm cells after e-bandage treatment. Reductions in intracellular ATP levels of yeast biofilm cells were recorded post e-bandage treatment. Our results suggest that exposure to H 2 O 2 -producing e-bandages reduce in vitro viable cell counts of yeast biofilms, making this a potential new topical treatment approach for fungal wound infections.


1963 ◽  
Vol 11 (4) ◽  
pp. 305-309
Author(s):  
A. F. Gaudy ◽  
F. Abu-Niaaj ◽  
E. T. Gaudy

Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 684
Author(s):  
Lillian Yu ◽  
Reynal Palafox-Rosas ◽  
Brian Luna ◽  
Rosemary C. She

Clostridioides difficile colitis overgrowth occurs when the normal gut microbiome becomes disrupted, often due to antibiotics. Effective treatment remains elusive, due partly to the persistence of its spores in the gut. Natural substances like manuka honey offer an alternative antimicrobial mechanism of action to conventional antibiotics. We investigated the antibiotic activity of manuka honey against 20 C. difficile isolates. The minimum inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBC) of manuka honeys of methylglyoxal (MGO) grades 30+, 100+, 250+, and 400+ were determined based on broth microdilution. Sporicidal activity was assessed in a range of honey concentrations by enumerating total viable cell and spore counts at 0–96 h after organism inoculation. The MICs of C. difficile ranged from 4% to >30% (w/v). MIC50 for the four MGO grades were similar at 10–14%. MBC results for the majority of isolates were distributed bimodally at MBC/MIC ratios ≤4 or MBC >30%. Growth kinetics in honey showed total viable cell counts remaining >105 colony-forming units (CFU)/mL at all time points, whereas spore counts remained within 1-log of baseline (102 CFU/mL) in honey but steadily increased in the drug-free control to >105 CFU/mL by 96 h. Manuka honey demonstrated variable inhibitory and bactericidal activity against C. difficile. MGO grade had no noticeable impact on overall MIC distributions or bactericidal activity. Although manuka honey could inhibit spore proliferation, it did not eradicate spores completely.


2020 ◽  
Vol 66 (3) ◽  
pp. 256-262 ◽  
Author(s):  
Sarah Martinez ◽  
Eric Déziel

Optical density (OD) measurement is the standard method used in microbiology for estimating bacterial concentrations in cultures. However, most studies do not compare these measurements with viable cell counts and assume that they reflect the real cell concentration. Burkholderia thailandensis was recently identified as a polyhydroxyalkanoate (PHA) producer. PHA biosynthesis seems to be coded by an orthologue of the Cupriavidus necator phaC gene. When growing cultures of wild-type strain E264 and an isogenic phaC mutant, we noted a difference in their OD600 values, although viable cell counts indicated similar growth. Investigating the cellular morphologies of both strains, we found that under our conditions the wild-type strain was full of PHA granules, deforming the cells, while the mutant contained no granules. These factors apparently affected the light scattering, making the OD600 values no longer representative of cell density. We show a direct correlation between OD600 values and the accumulation of PHA. We conclude that OD measurement is unreliable for growth evaluation of B. thailandensis because of PHA production. This study also suggests that B. thailandensis could represent an excellent candidate for PHA bioproduction. Correlation between OD measurements and viable cell counts should be verified in any study performed with B. thailandensis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Cole Guggisberg ◽  
Moon-Suhn Ryu

Abstract Objectives Iron recycled from erythrophagocytosis by macrophages serves as a primary source of systemic iron. NCOA4 mediates ferritin turnover via ferritinophagy. Yet, whether NCOA4 is important in macrophages or erythrophagocytosis-mediated iron recycling remains unclear, and thus was assessed in vitro. Methods J774 cells were employed as an in vitro model of macrophages. Iron studies involved treatments of ferric ammonium citrate (FAC) or an iron chelator, deferoxamine (Dfo). To recapitulate systemic iron recycling and overload, cells were treated with opsonized erythrocytes and minihepcidin, respectively. NCOA4 knock-down was achieved by siRNA transfection. Iron gene responses were measured by qPCR and western analyses, and viable cell counts were colorimetrically determined by CCK8 assays as functional outcomes. Results NCOA4 protein abundance was inversely related to iron availability and ferritin in macrophages. Loss of NCOA4 resulted in impaired ferritin turnover, and led to a reduction in viable cells when combined with iron deficiency. By erythrophagocytosis, a peak in ferritin abundance was observed at 12 h with a subsequent decrease at 24 h. This loss in ferritin was NCOA4-dependent. Minihepcidin caused accumulation of ferritin, along with a repression of NCOA4 in both control and erythrocyte-laden macrophages. Hepcidin activity had no effect on ferritin when NCOA4 was depleted. Conclusions NCOA4 mediates the release of ferritin iron during cellular iron restriction and iron recycling by macrophages. Moreover, our studies suggest that macrophage NCOA4 is integral to systemic iron homeostasis by responding to the iron regulatory hormone, hepcidin. Thus, NCOA4 and ferritinophagy may potentially serve as therapeutic targets for treatments of iron disorders and anemia of chronic disease. Funding Sources Supported by the NIFA, USDA, Hatch project under MIN-18–118 and intramural support to M-S.R.


1999 ◽  
Vol 43 (5) ◽  
pp. 1189-1191 ◽  
Author(s):  
M. H. Cynamon ◽  
S. P. Klemens ◽  
C. A. Sharpe ◽  
S. Chase

ABSTRACT The activities of linezolid, eperezolid, and PNU-100480 were evaluated in a murine model of tuberculosis. Approximately 107 viable Mycobacterium tuberculosis ATCC 35801 organisms were given intravenously to 4-week-old outbred CD-1 mice. In the first study, treatment was started 1 day postinfection and was given by gavage for 4 weeks. Viable cell counts were determined from homogenates of spleens and lungs. PNU-100480 was as active as isoniazid. Linezolid was somewhat less active than PNU-100480 and isoniazid. Eperezolid had little activity in this model. In the next two studies, treatment was started 1 week postinfection. A dose-response study was performed with PNU-100480 and linezolid (both at 25, 50, and 100 mg/kg of body weight). PNU-100480 was more active than linezolid, and its efficacy increased with an escalation of the dose. Subsequently, the activity of PNU-100480 alone and in combination with rifampin or isoniazid was evaluated and was compared to that of isoniazid-rifampin. The activity of PNU-100480 was similar to that of isoniazid and/or rifampin in the various combinations tested. Further evaluation of these oxazolidinones in the murine test system would be useful prior to the development of clinical studies with humans.


Sign in / Sign up

Export Citation Format

Share Document