In Vitro Anti-Biofilm Activity of Hydrogen-Peroxide Generating Electrochemical Bandage Against Yeast Biofilms

Author(s):  
Yash S. Raval ◽  
Abdelrhman Mohamed ◽  
Jayawant N. Mandrekar ◽  
Cody Fisher ◽  
Kerryl E. Greenwood-Quaintance ◽  
...  

Wound infections are caused by bacteria and/or fungi. The presence of fungal biofilms in wound beds presents a unique challenge, as fungal biofilms may be difficult to eradicate. The goal of this work was to assess the in vitro anti-biofilm activity of a H 2 O 2 -producing electrochemical bandage (e-bandage) against 15 yeast isolates representing commonly-encountered species. Time-dependent decreases in viable biofilm CFU counts of all isolates tested were observed, resulting in no visible colonies with 48 hours of exposure by plate culture. Fluorescence microscopic analysis showed extensive cell membrane damage of biofilm cells after e-bandage treatment. Reductions in intracellular ATP levels of yeast biofilm cells were recorded post e-bandage treatment. Our results suggest that exposure to H 2 O 2 -producing e-bandages reduce in vitro viable cell counts of yeast biofilms, making this a potential new topical treatment approach for fungal wound infections.

Author(s):  
Laure Flurin ◽  
Yash S. Raval ◽  
Abdelrhman Mohamed ◽  
Kerryl E. Greenwood-Quaintance ◽  
Edison J. Cano ◽  
...  

Oxidizing agents like hypochlorous acid (HOCl) have antimicrobial activity. We developed an integrated electrochemical scaffold or ‘e-scaffold’ that delivers a continuous low dose of HOCl aimed at targeting microbial biofilms without exceeding concentrations toxic to humans, as a prototype of a device being developed to treat wound infections in humans. In this work, we tested the device against 33 isolates of bacteria (including isolates with acquired antibiotic resistance) grown as in vitro biofilms, alongside 12 combinations of dual-species in vitro biofilms. Biofilms were grown on the bottoms of 12-well plates for 24 hours. An integrated e-scaffold was placed atop each biofilm and polarized at 1.5V for 1, 2 or 4 hours. HOCl was produced electrochemically by oxidizing chloride ions (Cl-) in solution to chlorine (Cl2); dissolved Cl2 spontaneously dissociates in water to produce HOCl. The cumulative concentration of HOCl produced at the working electrode in each well was estimated to be 7.89, 13.46, and 29.50 mM after 1, 2 and 4 hours of polarization, respectively. Four hours of polarization caused an average reduction of 6.13 log10 CFU/cm2 (±1.99 log10 CFU/cm2) of viable cell counts of mono-species biofilms and 5.53 log10 CFU/cm2 (±2.31 log10 CFU/cm2) for the 12 dual-species biofilms studied. The described integrated e-scaffold reduces viable bacterial cell counts in biofilms formed by an array of antibiotic-susceptible and -resistant bacteria alone and in combination.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S643-S643
Author(s):  
Maria F Mojica ◽  
Christopher Bethel ◽  
Emilia Caselli ◽  
Magdalena A Taracila ◽  
Fabio Prati ◽  
...  

Abstract Background Catalytic mechanisms of serine β-lactamases (SBL; classes A, C and D) and metallo-β-lactamases (MBLs) have directed divergent strategies towards inhibitor design. SBL inhibitors act as high affinity substrates that -as in BATSIs- form a reversible, dative covalent bond with the conserved active site Ser. MBL inhibitors bind the active-site Zn2+ ions and displace the nucleophilic OH-. Herein, we explore the efficacy of a series of BATSI compounds with a free-thiol group at inhibiting both SBL and MBL. Methods Exploratory compounds were synthesized using stereoselective homologation of (+) pinandiol boronates to introduce the amino group on the boron-bearing carbon atom, which was subsequently acylated with mercaptopropanoic acid. Representative SBL (KPC-2, ADC-7, PDC-3 and OXA-23) and MBL (IMP-1, NDM-1 and VIM-2) were purified and used for the kinetic characterization of the BATSIs. In vitro activity was evaluated by a modified time-kill curve assay, using SBL and MBL-producing strains. Results Kinetic assays revealed that IC50 values ranged from 1.3 µM to >100 µM for this series. The best compound, s08033, demonstrated inhibitory activity against KPC-2, VIM-2, ADC-7 and PDC-3, with IC50 in the low μM range. Reduction of at least 1.5 log10-fold of viable cell counts upon exposure to sub-lethal concentrations of antibiotics (AB) + s08033, compared to the cells exposed to AB alone, demonstrated the microbiological activity of this novel compound against SBL- and MBL-producing E. coli (Table 1). Table 1 Conclusion Addition of a free-thiol group to the BATSI scaffold increases the range of these compounds resulting in a broad-spectrum inhibitor toward clinically important carbapenemases and cephalosporinases. Disclosures Robert A. Bonomo, MD, Entasis, Merck, Venatorx (Research Grant or Support)


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Cole Guggisberg ◽  
Moon-Suhn Ryu

Abstract Objectives Iron recycled from erythrophagocytosis by macrophages serves as a primary source of systemic iron. NCOA4 mediates ferritin turnover via ferritinophagy. Yet, whether NCOA4 is important in macrophages or erythrophagocytosis-mediated iron recycling remains unclear, and thus was assessed in vitro. Methods J774 cells were employed as an in vitro model of macrophages. Iron studies involved treatments of ferric ammonium citrate (FAC) or an iron chelator, deferoxamine (Dfo). To recapitulate systemic iron recycling and overload, cells were treated with opsonized erythrocytes and minihepcidin, respectively. NCOA4 knock-down was achieved by siRNA transfection. Iron gene responses were measured by qPCR and western analyses, and viable cell counts were colorimetrically determined by CCK8 assays as functional outcomes. Results NCOA4 protein abundance was inversely related to iron availability and ferritin in macrophages. Loss of NCOA4 resulted in impaired ferritin turnover, and led to a reduction in viable cells when combined with iron deficiency. By erythrophagocytosis, a peak in ferritin abundance was observed at 12 h with a subsequent decrease at 24 h. This loss in ferritin was NCOA4-dependent. Minihepcidin caused accumulation of ferritin, along with a repression of NCOA4 in both control and erythrocyte-laden macrophages. Hepcidin activity had no effect on ferritin when NCOA4 was depleted. Conclusions NCOA4 mediates the release of ferritin iron during cellular iron restriction and iron recycling by macrophages. Moreover, our studies suggest that macrophage NCOA4 is integral to systemic iron homeostasis by responding to the iron regulatory hormone, hepcidin. Thus, NCOA4 and ferritinophagy may potentially serve as therapeutic targets for treatments of iron disorders and anemia of chronic disease. Funding Sources Supported by the NIFA, USDA, Hatch project under MIN-18–118 and intramural support to M-S.R.


1977 ◽  
Vol 232 (3) ◽  
pp. F187-F195 ◽  
Author(s):  
S. A. Lewis

The function of adult mammalian urinary bladder is evaluated in light of recent in vitro experiments. The discrepancy between in vivo and in vitro experimental results is examined and a possible solution proposed. Techniques for eliminating edge damage and measuring apical membrane surface area are described. A new chamber design for microelectrode studies is illustrated. The possibility of apical cell membrane damage caused by microelectrodes is critically examined and tested using the polyene antibiotic Nystatin. Using data from transepithelial and microelectrode experiments, a model for net Na+ transport across the bladder is proposed and then critically analyzed. The possible clinical implications of the in vitro experiments are briefly discussed.


Blood ◽  
1976 ◽  
Vol 47 (6) ◽  
pp. 909-917 ◽  
Author(s):  
TA Lane ◽  
ER Burka

Abstract Red blood cells exposed to cyanate (CNO) in vitro have a concentration- dependent decreased cell survival time associated with an inhibition of the ability of the cell membrane to synthesize lipids. The t1/2 of rabbit erythrocytes exposed to 30 mM or 50 mM cyanate for 1 hr at 37 degrees C is reduced from the normal 24 days to 15 and 9 days, respectively. The cyanate-induced defect in membrane lipid metabolism is irreversible. Carbamylation of membrane proteins and damage to metabolism are minimized by limiting exposure in vitro to 15 mM cyanate at 4 degrees C for 30 min. Cells carbamylated under these conditions do not have a shortened life span. Levels of globin carbamylation of 0.5 moles CNO/mole hemoglobin, shown to be clinically effective in prolonging the life span of sickle erythrocytes, are obtained under these conditions and reach maximal levels after only 30 min of incubation. Carbamylation of blood in CPD anticoagulant is inferior to either ACD or heparin. The findings indicate that adequate carbamylation of sickle erythrocytes with minimal red cell membrane damage can be achieved without significant modification of the standard plasmapheresis procedure utilized by the working blood bank.


1996 ◽  
Vol 40 (1) ◽  
pp. 14-16 ◽  
Author(s):  
S P Klemens ◽  
C A Sharpe ◽  
M H Cynamon

The activity of pyrazinamide (PZA) against eight isolates of Mycobacterium tuberculosis in a murine infection model was evaluated. M. tuberculosis isolates with various degrees of in vitro susceptibility to PZA (MIC range, 32 to > 2,048 micrograms/ml) were used. Four-week-old female mice were infected intravenously with approximately 10(7) viable M. tuberculosis organisms. PZA at 150 mg/kg of body weight was started 1 day postinfection and given 5 days/week for 4 weeks. Infected but untreated mice were compared with PZA-treated mice. Mice were sacrificed at the completion of the treatment period, and viable cell counts were determined from homogenates of spleens and right lungs. PZA had activity in the murine test system against M. tuberculosis isolates for which the MICs were < or = 256 micrograms/ml. However, there was an inconsistent correlation between the absolute MICs and the reductions in organ viable cell counts. Studies with drug-resistant M. tuberculosis isolates with an isogenic background would improve evaluation of drug efficacy in the murine test system. Further evaluation of antimycobacterial agents against monodrug-resistant isolates will provide data that will be useful for development of algorithms for treatment of infection with drug-resistant organisms.


2005 ◽  
Vol 11 (4) ◽  
pp. 307-314 ◽  
Author(s):  
M. C. Collado ◽  
Y. Moreno ◽  
E. Hernández ◽  
J. M. Cobo ◽  
M. Hernández

Levels of bifidobacteria contained in commercial fermented milks in Spain were determined by fluorescent techniques. The transit tolerance of probiotic bifidobacteria strains to human gastrointestinal tract (GIT) was assessed in vitro. The number of bifidobacteria in commercial fermented milks declared to contain bifidobacteria varied from 104 to 107 bacteria/m L. Viable cell counts estimated by plating onto selective media were lower than direct counts. Bifidobacteriumstrains analysed showed different survival behaviour. Viable bacteria counts decreased considerably following exposure to gastric juice. As only intrinsic acid resistant cells survive their passage through the human intestine, the selection of acid tolerant strains is necessary for the elaboration of probiotic products. Viability of dairy bifidobacteria is affected by gastrointestinal juices but the majority of tested strains survived well at gastrointestinal conditions. The reason for this may be the low number of viable bifidobacteria contained in commercial dairy products. Adaptation and survival at low pH is likely to determine the efficacy of Bifidobacterium strains both as dairy starters and probiotic microorganisms. This study confirmed the usefulness of fluorescent techniques for a rapid and accurate evaluation of bacterial viability in probiotic products.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yishuai Lin ◽  
Ying Zhang ◽  
Shixing Liu ◽  
Dandan Ye ◽  
Liqiong Chen ◽  
...  

Colistin is being considered as “the last ditch” treatment in many infections caused by Gram-negative stains. However, colistin is becoming increasingly invalid in treating patients who are infected with colistin-resistant Escherichia coli (E. coli) and Klebsiella Pneumoniae (K. pneumoniae). To cope with the continuous emergence of colistin resistance, the development of new drugs and therapies is highly imminent. Herein, in this work, we surprisingly found that the combination of quercetin with colistin could efficiently and synergistically eradicate the colistin-resistant E. coli and K. pneumoniae, as confirmed by the synergy checkboard and time-kill assay. Mechanismly, the treatment of quercetin combined with colistin could significantly downregulate the expression of mcr-1 and mgrB that are responsible for colistin-resistance, synergistically enhancing the bacterial cell membrane damage efficacy of colistin. The colistin/quercetin combination was notably efficient in eradicating the colistin-resistant E. coli and K. pneumoniae both in vitro and in vivo. Therefore, our results may provide an efficient alternative pathway against colistin-resistant E. coli and K. pneumoniae infections.


Blood ◽  
1976 ◽  
Vol 47 (6) ◽  
pp. 909-917
Author(s):  
TA Lane ◽  
ER Burka

Red blood cells exposed to cyanate (CNO) in vitro have a concentration- dependent decreased cell survival time associated with an inhibition of the ability of the cell membrane to synthesize lipids. The t1/2 of rabbit erythrocytes exposed to 30 mM or 50 mM cyanate for 1 hr at 37 degrees C is reduced from the normal 24 days to 15 and 9 days, respectively. The cyanate-induced defect in membrane lipid metabolism is irreversible. Carbamylation of membrane proteins and damage to metabolism are minimized by limiting exposure in vitro to 15 mM cyanate at 4 degrees C for 30 min. Cells carbamylated under these conditions do not have a shortened life span. Levels of globin carbamylation of 0.5 moles CNO/mole hemoglobin, shown to be clinically effective in prolonging the life span of sickle erythrocytes, are obtained under these conditions and reach maximal levels after only 30 min of incubation. Carbamylation of blood in CPD anticoagulant is inferior to either ACD or heparin. The findings indicate that adequate carbamylation of sickle erythrocytes with minimal red cell membrane damage can be achieved without significant modification of the standard plasmapheresis procedure utilized by the working blood bank.


2020 ◽  
Author(s):  
Mengke Han ◽  
Jiangbo Zhao ◽  
Joseph Mahandas Fabian ◽  
Sanam Mustafa ◽  
Yinlan Ruan ◽  
...  

ABSTRACTNanoparticles with desirable properties and functions have been actively developed for various bio-medical research, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. However, an effective method to deliver nanoparticles into the intracellular environment is a major challenge and critical to many biological studies. Current techniques, such as intracellular uptake, electroporation and microinjection, each have their own set of benefits and associated limitations (e.g., aggregation and endosomal degradation of nanoparticles, high cell mortality and low throughput). Here, the well-established microelectrophoresis technique is applied for the first time to deliver nanoparticles into target cells, which overcomes some of these delivery difficulties. Semiconductive quantum dots, with average hydrodynamic diameter of 24.4 nm, have been successfully ejected via small electrical currents (−0.2 nA) through fine-tipped glass micropipettes as an example, into living human embryonic kidney cells (roughly 20 - 30μm in length). As proposed by previous studies, micropipettes were fabricated to have an average tip inner diameter of 206 nm for ejection but less than 500 nm to minimize the cell membrane damage and cell distortion. In addition, delivered quantum dots were found to stay monodispersed within the cells for approximately one hour. We believe that microelectrophoresis technique may serve as a simple and general strategy for delivering a variety of nanoparticles intracellularly in various biological systems.


Sign in / Sign up

Export Citation Format

Share Document