Mannose-Binding Activity of Escherichia coli: a Determinant of Attachment and Ingestion of the Bacteria by Macrophages

1980 ◽  
Vol 29 (2) ◽  
pp. 417-424
Author(s):  
Zvi Bar-Shavit ◽  
Rachel Goldman ◽  
Itzhak Ofek ◽  
Nathan Sharon ◽  
David Mirelman

Recently, it was suggested that a mannose-specific lectin on the bacterial cell surface is responsible for the recognition by phagocytic cells of certain nonopsonized Escherichia coli strains. In this study we assessed the interaction of two strains of E. coli at different phases of growth with a monolayer of mouse peritoneal macrophages and developed a direct method with [ 14 C]mannan to quantitate the bacterial mannose-binding activity. Normal-sized bacteria were obtained from logarithmic and stationary phases of growth. Nonseptated filamentous cells were formed by growing the organisms in the presence of cephalexin or at a restrictive temperature. Attachment to macrophages of all bacterial forms was inhibited by methyl α- d -mannoside and mannan but not by other sugars tested. The attachment of stationary phase and filamentous bacteria to macrophages, as well as their mannose-binding activity, was similar, whereas in the exponential-phase bacteria they were markedly reduced. The results show a linear relation between the two parameters ( R = 0.98, P < 0.001). The internalization of the filamentous cells attached to macrophages during 45 min of incubation was much less efficient (20%) compared to that of exponential-phase, stationary-phase, or antibody-coated filamentous bacteria (90%). The results indicate that the mannose-binding activity of E. coli determines the recognition of the organisms by phagocytes. They further suggest that administration of β-lactam antibiotics may impair elimination of certain pathogenic bacteria by inducing the formation of filaments which are inefficiently internalized by the host's phagocytic cells.

2006 ◽  
Vol 188 (17) ◽  
pp. 6326-6334 ◽  
Author(s):  
Sergei Korshunov ◽  
James A. Imlay

ABSTRACT Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.


1997 ◽  
Vol 43 (12) ◽  
pp. 1157-1163 ◽  
Author(s):  
Holly S. Schrader ◽  
John O. Schrader ◽  
Jeremy J. Walker ◽  
Thomas A. Wolf ◽  
Kenneth W. Nickerson ◽  
...  

Bacteriophages specific for Pseudomonas aeruginosa and Escherichia coli were examined for their ability to multiply in stationary phase hosts. Four out of five bacteriophages tested, including E. coli bacteriophage T7M, were able to multiply in stationary phase hosts. The bacteriophage ACQ had a mean burst size of approximately 1000 in exponential phase P. aeruginosa hosts and 102 in starved hosts, with corresponding latent periods that increased from 65 to 210 min. The bacteriophage UT1 had a mean burst size of approximately 211 in exponential phase P. aeruginosa hosts and 11 in starved hosts, with latent periods that increased from a mean of 90 min in exponential phase hosts to 165 min in starved hosts. Bacteriophage multiplication occurred whether or not the hosts had entered stationary phase, either because the cultures had been incubated for 24 h or were starved. Significantly, bacteriophage multiplication occurred in P. aeruginosa, which had been starved for periods of 24 h, several weeks, or 5 years. Only one P. aeruginosa virus, BLB, was found to be incapable of multiplication in stationary phase hosts. These results reveal that starvation does not offer bacterial hosts refuge from bacteriophage infection and suggest that bacteriophages will be responsible for significant bacterial mortality in most natural ecosystems.Key words: bacteriophage multiplication, stationary phase, starvation.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Meltem Akbas ◽  
Tugrul Doruk ◽  
Serhat Ozdemir ◽  
Benjamin Stark

AbstractIn Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD− E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD− cells, but much more to SOD− cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD− backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.


1997 ◽  
Vol 43 (11) ◽  
pp. 1036-1043 ◽  
Author(s):  
M. Gourmelon ◽  
M. Pommepuy ◽  
D. Touati ◽  
M. Cormier

We investigated the effect of visible light on Escherichia coli in seawater microcosms. Escherichia coli lost its ability to form colonies in marine environments when exposed to artificial continuous visible light. Survival of illuminated bacteria during the stationary phase was drastically reduced in the absence of the σsfactor (RpoS or KatF) that regulates numerous genes induced in this phase. In the stationary phase, double catalase mutants katE katG and mutants defective in the protein Dps (both catalase and Dps are involved in resistance to hydrogen peroxide (H2O2)), were more sensitive to light. In the exponential phase, a mutation in oxyR, the regulatory gene of the adaptive response to H2O2, increased sensitivity to light, further suggesting that deleterious effects might be associated with H2O2production. However, in the stationary phase, the katE katG dps mutant was considerably more resistant to visible light than the rpoS mutant, suggesting rpoS-dependent protection against deleterious effects other than those related to H2O2. The deleterious action of visible light was less important when the salinity decreased. In freshwater, rpoS and katE katG dps mutants did not show a drastic difference in sensitivity to light suggesting that osmolarity sensitizes E. coli to those deleterious effects of visible light that are unrelated to H2O2.Key words: Escherichia coli, stationary phase, RpoS, visible light, seawater.


1991 ◽  
Vol 54 (2) ◽  
pp. 90-93 ◽  
Author(s):  
CAROLINE E. O'NEILL ◽  
GARY K. BISSONNETTE

Four strains of Escherichia coli were examined for response to heat stress (60°C) as a function of physiological age and antecedent oxygen growth conditions. Exponential phase cells were more susceptible to heat than cells grown to the stationary phase. Anaerobically grown, exponential phase cells were more susceptible to thermal stress than were cells grown to a similar physiological state but under aerobic conditions. In the case of stationary phase cells, differences in response to heat stress as related to prior oxygen growth conditions were equivocal. Repair characteristics of thermally injured cells were also examined. Cells grown anaerobically prior to heat stress required 1.5 h longer than their aerobically grown counterparts to complete repair. These findings suggest that antecedent oxygen growth conditions influence the response of E. coli to thermal stress and perhaps, more generally, that persistence of environmentally stressed enteric microorganisms must be considered in relation to prior oxygen growth conditions in vivo.


1998 ◽  
Vol 64 (12) ◽  
pp. 4862-4869 ◽  
Author(s):  
Jörg F. Rippmann ◽  
Michaela Klein ◽  
Christian Hoischen ◽  
Bodo Brocks ◽  
Wolfgang J. Rettig ◽  
...  

ABSTRACT Recently it has been demonstrated that L-form cells ofProteus mirabilis (L VI), which lack a periplasmic compartment, can be efficiently used in the production and secretion of heterologous proteins. In search of novel expression systems for recombinant antibodies, we compared levels of single-chain variable-fragment (scFv) production in Escherichia coliJM109 and P. mirabilis L VI, which express four distinct scFvs of potential clinical interest that show differences in levels of expression and in their tendencies to form aggregates upon periplasmic expression. Production of all analyzed scFvs in E. coli was limited by the severe toxic effect of the heterologous product as indicated by inhibition of culture growth and the formation of insoluble aggregates in the periplasmic space, limiting the yield of active product. In contrast, the L-form cells exhibited nearly unlimited growth under the tested production conditions for all scFvs examined. Moreover, expression experiments with P. mirabilis L VI led to scFv concentrations in the range of 40 to 200 mg per liter of culture medium (corresponding to volume yields 33- to 160-fold higher than those with E. coli JM109), depending on the expressed antibody. In a translocation inhibition experiment the secretion of the scFv constructs was shown to be an active transport coupled to the signal cleavage. We suppose that this direct release of the newly synthesized product into a large volume of the growth medium favors folding into the native active structure. The limited aggregation of scFv observed in the P. mirabilis L VI supernatant (occurring in a first-order-kinetics manner) was found to be due to intrinsic features of the scFv and not related to the expression process of the host cells. The P. mirabilis L VI supernatant was found to be advantageous for scFv purification. A two-step chromatography procedure led to homogeneous scFv with high antigen binding activity as revealed from binding experiments with eukaryotic cells.


2020 ◽  
Vol 367 (22) ◽  
Author(s):  
Chris Coward ◽  
Gopujara Dharmalingham ◽  
Omar Abdulle ◽  
Tim Avis ◽  
Stephan Beisken ◽  
...  

ABSTRACT The use of bacterial transposon mutant libraries in phenotypic screens is a well-established technique for determining which genes are essential or advantageous for growth in conditions of interest. Standard, inactivating, transposon libraries cannot give direct information about genes whose over-expression gives a selective advantage. We report the development of a system wherein outward-oriented promoters are included in mini-transposons, generation of transposon mutant libraries in Escherichia coli and Pseudomonas aeruginosa and their use to probe genes important for growth under selection with the antimicrobial fosfomycin, and a recently-developed leucyl-tRNA synthase inhibitor. In addition to the identification of known mechanisms of action and resistance, we identify the carbon–phosphorous lyase complex as a potential resistance liability for fosfomycin in E. coli and P. aeruginosa. The use of this technology can facilitate the development of novel mechanism-of-action antimicrobials that are urgently required to combat the increasing threat worldwide from antimicrobial-resistant pathogenic bacteria.


2015 ◽  
Vol 78 (9) ◽  
pp. 1738-1744 ◽  
Author(s):  
MICHAEL KNOWLES ◽  
DOMINIC LAMBERT ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER ◽  
BURTON W. BLAIS

Control strains of bacterial pathogens such as Escherichia coli O157:H7 are commonly processed in parallel with test samples in food microbiology laboratories as a quality control measure to assure the satisfactory performance of materials used in the analytical procedure. Before positive findings can be reported for risk management purposes, analysts must have a means of verifying that pathogenic bacteria (e.g., E. coli O157:H7) recovered from test samples are not due to inadvertent contamination with the control strain routinely handled in the laboratory environment. Here, we report on the application of an in-house bioinformatic pipeline for the identification of unique genomic signature sequences in the development of specific oligonucleotide primers enabling the identification of a common positive control strain, E. coli O157:H7 (ATCC 35150), using a simple PCR procedure.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


1998 ◽  
Vol 180 (10) ◽  
pp. 2623-2629 ◽  
Author(s):  
Jonathan E. Visick ◽  
Hui Cai ◽  
Steven Clarke

ABSTRACT Like its homologs throughout the biological world, thel-isoaspartyl protein repair methyltransferase ofEscherichia coli, encoded by the pcm gene, can convert abnormal l-isoaspartyl residues in proteins (which form spontaneously from asparaginyl or aspartyl residues) to normal aspartyl residues. Mutations in pcm were reported to greatly reduce survival in stationary phase and when cells were subjected to heat or osmotic stresses (C. Li and S. Clarke, Proc. Natl. Acad. Sci. USA 89:9885–9889, 1992). However, we subsequently demonstrated that those strains had a secondary mutation inrpoS, which encodes a stationary-phase-specific sigma factor (J. E. Visick and S. Clarke, J. Bacteriol. 179:4158–4163, 1997). We now show that the rpoS mutation, resulting in a 90% decrease in HPII catalase activity, can account for the previously observed phenotypes. We further demonstrate that a new pcmmutant lacks these phenotypes. Interestingly, the newly constructedpcm mutant, when maintained in stationary phase for extended periods, is susceptible to environmental stresses, including exposure to methanol, oxygen radical generation by paraquat, high salt concentrations, and repeated heating to 42°C. The pcmmutation also results in a competitive disadvantage in stationary-phase cells. All of these phenotypes can be complemented by a functionalpcm gene integrated elsewhere in the chromosome. These data suggest that protein denaturation and isoaspartyl formation may act synergistically to the detriment of aging E. coli and that the repair methyltransferase can play a role in limiting the accumulation of the potentially disruptive isoaspartyl residues in vivo.


Sign in / Sign up

Export Citation Format

Share Document