scholarly journals Decreased Apoptosis in the Ileum and Ileal Peyer's Patches: a Feature after Infection with Rabbit EnteropathogenicEscherichia coli O103

2001 ◽  
Vol 69 (7) ◽  
pp. 4580-4589 ◽  
Author(s):  
Ursula Heczko ◽  
Chris M. Carthy ◽  
Bronwyn A. O'Brien ◽  
B. Brett Finlay

ABSTRACT Significant changes occur in intestinal epithelial cells after infection with enteropathogenic Escherichia coli (EPEC). However, it is unclear whether this pathogen alters rates of apoptosis. By using a naturally occurring weaned rabbit infection model, we determined physiological levels of apoptosis in rabbit ileum and ileal Peyer's patches (PP) and compared them to those found after infection with adherent rabbit EPEC (REPEC O103). Various REPEC O103 strains were first tested in vitro for characteristic virulence features. Rabbits were then inoculated with the REPEC O103 strains that infected cultured cells the most efficiently. After experimental infection, intestinal samples were examined by light and electron microscopy. Simultaneously, ileal apoptosis was assessed by using terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and caspase 3 assays and by apoptotic cell counts based on morphology (hematoxylin-and-eosin staining). The highest physiological apoptotic indices were measured in PP germinal centers (median = 14.7%), followed by PP domed villi (8.1%), tips of absorptive villi (3.8%), and ileal crypt regions (0.5%). Severe infection with REPEC O103 resulted in a significant decrease in apoptosis in PP germinal centers (determined by TUNEL assay; P = 0.01), in the tips of ileal absorptive villi (determined by H&E staining;P = 0.04), and in whole ileal cell lysates (determined by caspase 3 assay; P = 0.001). We concluded that REPEC O103 does not promote apoptosis. Furthermore, we cannot rule out the possibility that REPEC O103, in fact, decreases apoptotic levels in the rabbit ileum.

2021 ◽  
Vol 9 (2) ◽  
pp. 82-86
Author(s):  
M. O. Nikitina ◽  
M. V. Kravtsova ◽  
A. A. Bohomaz

A feature of rabbit gut-associated lymphoid tissue is that its structure is more developed than in other animal species. In rabbits it is composed of sacculus rotundus, vermiform appendix and Peyer’s patches. These immune formations contain an organized component of lymphoid tissue – lymphoid nodules (B-cell zone) and interfollicular region (T-cell). Secondary lymphoid nodules with germinal centers presented in them are formed due to antigen stimulation. The caecum of Hyplus rabbits at the age of 30 -, 60 - and 90-days was investigated. Each age group consisted of 5 rabbits. Experimental rabbits are clinically healthy, unvaccinated and untreated against ecto- and endoparasites. Peyer’s patches of the caecum were selected for the study and fixed in 10% of formalin. Subsequently, the specimens stained with hematoxylin-eosin were prepared from the obtained samples. On the 30th day of life, Peyer’s patches in the cecum were detected by gross examination. On the histological level, they had formed interfollicular region and lymphoid nodules. In turn, lymphoid nodules were divided into primary and secondary ones. A well-defined mantle zone and germinal centers were observed in the secondary lymphoid nodules. The regularities of their area indicators increase (mean value, median and interquartile range (IQR)) and their correlation were studied. The most intensive growth of the mantle area and the germinal center was observed from the 30th to the 60th day. The relative area of the mantle zone and the germinal center as part of the secondary lymphoid nodule was determined. Its value did not change during the experimental period.


2019 ◽  
Vol 20 (4) ◽  
pp. 482-492 ◽  
Author(s):  
Adi Biram ◽  
Anneli Strömberg ◽  
Eitan Winter ◽  
Liat Stoler-Barak ◽  
Ran Salomon ◽  
...  

2006 ◽  
Vol 74 (3) ◽  
pp. 1516-1527 ◽  
Author(s):  
Lauren K. Logsdon ◽  
Joan Mecsas

ABSTRACT Single-strain infections and coinfections are frequently used to assess roles of virulence factors in infected tissues. After oral inoculation of mice, Yersinia pseudotuberculosis yopE and yopH mutants colonize the intestines and Peyer's patches in single-strain infections but fail to persist in competition with wild-type Y. pseudotuberculosis, indicating that these two infection models provide different insights into the roles of Yops. To determine how wild-type Y. pseudotuberculosis hinders yop mutant survival, yop mutant colonization and host responses were investigated in several different infection models that isolated specific features of wild-type Y. pseudotuberculosis infection. Infection with wild-type Y. pseudotuberculosis caused significantly more inflammation than yop mutants. Results from coinfections of gamma interferon (IFN-γ)−/− mice revealed that IFN-γ-regulated defenses target these mutants, suggesting that YopE and YopH protect Y. pseudotuberculosis from these defenses in BALB/c mice. We developed an oral-intraperitoneal infection model to evaluate the effects of spleen and liver colonization by Y. pseudotuberculosis on yop mutants in the intestines. Spleen and liver infection increased inflammation and decreased yop mutant survival in the intestines, indicating that infection of these organs has consequences in intestinal tissues. Finally, competition infections with Y. pseudotuberculosis mutants with various abilities to induce inflammation demonstrated that survival of the yopE, but not the yopH, mutant was consistently decreased in inflamed tissues. In summary, infection with Y. pseudotuberculosis in intestinal and systemic sites induces intestinal inflammation, which decreases yop mutant survival. Thus, competition studies with wild-type yersiniae reveal critical roles of Yops in combating host responses to a normal virulent infection.


PEDIATRICS ◽  
1971 ◽  
Vol 47 (2) ◽  
pp. 399-404
Author(s):  
W. P. Faulk ◽  
W. S. Kiyasu ◽  
M. D. Cooper ◽  
H. H. Fudenberg

An 8½-month-old infant with absent IgM had recurrent Pseudomonas infections. IgG and IgA, but no IgM-containing plasma cells, were identified in the spleen by immunofluorescence. The spleen and lymph nodes lacked germinal centers, but Peyer's patches and the appendix were normal. The absence of IgM was perhaps genetically determined because the father's serum IgM was also low. This may have predisposed to the Pseudomonas infection, since antibodies to Pseudomonas are predominantly IgM.


Cell Reports ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 1910-1922.e5 ◽  
Author(s):  
Adi Biram ◽  
Eitan Winter ◽  
Alice E. Denton ◽  
Irina Zaretsky ◽  
Bareket Dassa ◽  
...  

1988 ◽  
Vol 36 (4) ◽  
pp. 417-423 ◽  
Author(s):  
T H Ermak ◽  
H J Steger ◽  
R L Owen ◽  
M F Heyworth

Treatment of mice with anti-L3T4, a monoclonal antibody directed against helper T-cells, impairs clearance of intestinal Giardia muris infection. The present study examined the effect of anti-L3T4 treatment on mouse Peyer's patch cytoarchitecture and on the distribution of T-cell subsets within microenvironments of the follicle. Female BALB/c mice, aged 8 weeks, were given 4-7 weekly injections of either anti-L3T4 (1 mg/wk) or PBS (control group), and Peyer's patches were examined by immunohistochemistry or flow cytometry. In anti-L3T4-treated mice, Peyer's patch follicles (B-cell areas) were about two thirds the size of follicles in controls, and virtually all the size difference occurred in germinal centers. Peyer's patches were depleted of L3T4+ cells, yet the proportion of Thy-1.2+ (all T) cells was not decreased correspondingly, and the distribution of Thy-1.2+ cells in the patches was similar to that in control mice. In anti-L3T4-treated mice, Thy-1.2+ cells consisted of (a) Ly-2+ (cytotoxic/suppressor T) cells, and (b) a population of Thy-1.2+ cells that were neither L3T4+ nor Ly-2+. After treatment, Ly-2+ cells accounted for most of the T-cells in interfollicular areas and were also scattered in follicles, in germinal centers, and below the dome epithelium--in areas where L3T4+ cells predominated in control mice. Thy-1.2+ cells that were L3T4- and Ly-2- were mainly localized below the dome epithelium. These shifts indicate complex interrelationships among different lymphocyte subsets in Peyer's patches.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Raghavendra Basavaraja ◽  
Senasige Thilina Madusanka ◽  
Jessica N. Drum ◽  
Ketan Shrestha ◽  
Svetlana Farberov ◽  
...  

Abstract Interferon-tau (IFNT), serves as a signal to maintain the corpus luteum (CL) during early pregnancy in domestic ruminants. We investigated here whether IFNT directly affects the function of luteinized bovine granulosa cells (LGCs), a model for large-luteal cells. Recombinant ovine IFNT (roIFNT) induced the IFN-stimulated genes (ISGs; MX2, ISG15, and OAS1Y). IFNT induced a rapid and transient (15–45 min) phosphorylation of STAT1, while total STAT1 protein was higher only after 24 h. IFNT treatment elevated viable LGCs numbers and decreased dead/apoptotic cell counts. Consistent with these effects on cell viability, IFNT upregulated cell survival proteins (MCL1, BCL-xL, and XIAP) and reduced the levels of gamma-H2AX, cleaved caspase-3, and thrombospondin-2 (THBS2) implicated in apoptosis. Notably, IFNT reversed the actions of THBS1 on cell viability, XIAP, and cleaved caspase-3. Furthermore, roIFNT stimulated proangiogenic genes, including FGF2, PDGFB, and PDGFAR. Corroborating the in vitro observations, CL collected from day 18 pregnant cows comprised higher ISGs together with elevated FGF2, PDGFB, and XIAP, compared with CL derived from day 18 cyclic cows. This study reveals that IFNT activates diverse pathways in LGCs, promoting survival and blood vessel stabilization while suppressing cell death signals. These mechanisms might contribute to CL maintenance during early pregnancy.


2001 ◽  
Vol 31 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Takeshi Yamanaka ◽  
Anne Straumfors ◽  
H. Craig Morton ◽  
Olav Fausa ◽  
Per Brandtzaeg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document