scholarly journals The Salmonella enterica Serovar Typhimurium Translocated Effectors SseJ and SifB Are Targeted to the Salmonella-Containing Vacuole

2003 ◽  
Vol 71 (1) ◽  
pp. 418-427 ◽  
Author(s):  
Jeremy A. Freeman ◽  
Michael E. Ohl ◽  
Samuel I. Miller

ABSTRACT The Salmonella enterica serovar Typhimurium type III secretion system (TTSS) encoded in Salmonella pathogenicity island 2 (SPI-2) promotes replication within host cells and systemic infection of mice. The SPI-2 TTSS is expressed following Salmonella internalization into host cells and translocates effectors across the membrane of the Salmonella-containing vacuole (SCV). Two effectors with similar amino-terminal domains, SseJ and SifB, localize to the SCV membrane in infected HEp-2 cells and subsequently traffic away from the SCV along Salmonella-induced-filaments (Sifs). Following infection of RAW cells, SseJ and SifB localize to the SCV as well as LAMP-1-positive, vesicular-appearing structures distant from the SCV. Trafficking of SseJ and SifB away from the SCV requires the SPI-2 effector SifA. Deletion of sseJ, but not sifB, leads to attenuation of Salmonella replication in mice following intraperitoneal inoculation. The contribution of SseJ to in vivo replication is identical in wild-type and sifA deletion backgrounds, suggesting that SseJ trafficking away from the SCV along Sifs is unnecessary for its virulence function.

2001 ◽  
Vol 69 (12) ◽  
pp. 7413-7418 ◽  
Author(s):  
Tahar van der Straaten ◽  
Angela van Diepen ◽  
Kitty Kwappenberg ◽  
Sjaak van Voorden ◽  
Kees Franken ◽  
...  

ABSTRACT Upon contact with host cells, the intracellular pathogenSalmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribedSalmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonellachromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 104 to 107bacteria in C3H/HeN and 101 to 104 bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity.


2001 ◽  
Vol 183 (15) ◽  
pp. 4652-4658 ◽  
Author(s):  
Hidenori Matsui ◽  
Christopher M. Bacot ◽  
Wendy A. Garlington ◽  
Thomas J. Doyle ◽  
Steve Roberts ◽  
...  

ABSTRACT In a mouse model of systemic infection, the spv genes carried on the Salmonella enterica serovar Typhimurium virulence plasmid increase the replication rate of salmonellae in host cells of the reticuloendothelial system, most likely within macrophages. A nonpolar deletion in the spvB gene greatly decreased virulence but could not be complemented by spvBalone. However, a low-copy-number plasmid expressing spvBCfrom a constitutive lacUV5 promoter did complement thespvB deletion. By examining a series of spvmutations and cloned spv sequences, we deduced thatspvB and spvC could be sufficient to confer plasmid-mediated virulence to S. enterica serovar Typhimurium. The spvBC-bearing plasmid was capable of replacing all of the spv genes, as well as the entire virulence plasmid, of serovar Typhimurium for causing systemic infection in BALB/c mice after subcutaneous, but not oral, inoculation. A point mutation in the spvBC plasmid preventing translation but not transcription of spvC eliminated the ability of the plasmid to confer virulence. Therefore, it appears that both spvB and spvC encode the principal effector factors for Spv- and plasmid-mediated virulence of serovar Typhimurium.


2015 ◽  
Vol 12 (113) ◽  
pp. 20150702 ◽  
Author(s):  
Richard Dybowski ◽  
Olivier Restif ◽  
Alexandre Goupy ◽  
Duncan J. Maskell ◽  
Piero Mastroeni ◽  
...  

Intravenous inoculation of Salmonella enterica serovar Typhimurium into mice is a prime experimental model of invasive salmonellosis. The use of wild-type isogenic tagged strains (WITS) in this system has revealed that bacteria undergo independent bottlenecks in the liver and spleen before establishing a systemic infection. We recently showed that those bacteria that survived the bottleneck exhibited enhanced growth when transferred to naive mice. In this study, we set out to disentangle the components of this in vivo adaptation by inoculating mice with WITS grown either in vitro or in vivo . We developed an original method to estimate the replication and killing rates of bacteria from experimental data, which involved solving the probability-generating function of a non-homogeneous birth–death–immigration process. This revealed a low initial mortality in bacteria obtained from a donor animal. Next, an analysis of WITS distributions in the livers and spleens of recipient animals indicated that in vivo -passaged bacteria started spreading between organs earlier than in vitro -grown bacteria. These results further our understanding of the influence of passage in a host on the fitness and virulence of Salmonella enterica and represent an advance in the power of investigation on the patterns and mechanisms of host–pathogen interactions.


2005 ◽  
Vol 73 (1) ◽  
pp. 459-463 ◽  
Author(s):  
Gary Rowley ◽  
Andrew Stevenson ◽  
Jan Kormanec ◽  
Mark Roberts

ABSTRACT The alternative sigma factor (RpoE σE) enables Salmonella enterica serovar Typhimurium to adapt to stressful conditions, such as oxidative stress, nutrient deprivation, and growth in mammalian tissues. Infection of mice by Salmonella serovar Typhimurium also requires σE. In Escherichia coli, activation of the σE pathway is dependent on proteolysis of the anti-sigma factor RseA and is initiated by DegS. DegS is also important in order for E. coli to cause extraintestinal infection in mice. We constructed a degS mutant of the serovar Typhimurium strain SL1344 and compared its behavior in vitro and in vivo with those of its wild-type (WT) parent and an isogenic rpoE mutant. Unlike E. coli degS strains, the Salmonella serovar Typhimurium degS strain grew as well as the WT strain at 42°C. The degS mutant survived very poorly in murine macrophages in vitro and was highly attenuated compared with the WT strain for both the oral and parenteral routes of infection in mice. However, the degS mutant was not as attenuated as the serovar Typhimurium rpoE mutant: 100- to 1,000-fold more degS bacteria than rpoE bacteria were present in the livers and spleens of mice 24 h after intraperitoneal challenge. In most assays, the rpoE mutant was more severely affected than the degS mutant and a σE-dependent reporter gene was more active in the degS mutant than the rpoE strain. These findings indicate that degS is important for activation of the σE pathway in serovar Typhimurium but that alternative pathways for σE activation probably exist.


2008 ◽  
Vol 76 (10) ◽  
pp. 4445-4454 ◽  
Author(s):  
Andrea L. Zbell ◽  
Susan E. Maier ◽  
Robert J. Maier

ABSTRACT Salmonella enterica serovar Typhimurium, a common enteric pathogen, possesses three NiFe uptake-type hydrogenases. The results from mouse infection studies suggest that the H2 oxidation capacity provided by these hydrogenases is important for virulence. Since the three enzymes are similar in structure and function, it may be expected that they are utilized under different locations and times during an infection. A recombination-based method to examine promoter activity in vivo (RIVET) was used to determine hydrogenase gene expression in macrophages, polymorphonuclear leukocyte (PMN)-like cells, and a mouse model of salmonellosis. The hyd and hya promoters showed increased expression in both murine macrophages and human PMN-like cells compared to that in the medium-only controls. Quantitative reverse transcription-PCR results suggested that hyb is also expressed in phagocytes. A nonpolar hya mutant was compromised for survival in macrophages compared to the wild type. This may be due to lower tolerance to acid stress, since the hya mutant was much more acid sensitive than the wild type. In addition, hya mutant cells were internalized by macrophages the same as wild-type cells. Mouse studies (RIVET) indicate that hyd is highly expressed in the liver and spleen early during infection but is expressed poorly in the ileum in infected animals. Late in the infection, the hyd genes were expressed at high levels in the ileum as well as in the liver and spleen. The hya genes were expressed at low levels in all locations tested. These results suggest that the hydrogenases are used to oxidize hydrogen in different stages of an infection.


2002 ◽  
Vol 70 (6) ◽  
pp. 3264-3270 ◽  
Author(s):  
John H. Brumell ◽  
Patrick Tang ◽  
Michelle L. Zaharik ◽  
B. Brett Finlay

ABSTRACT Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that inhabits a vacuolar compartment, called the Salmonella-containing vacuole (SCV), in infected host cells. Maintenance of the SCV is accomplished by SifA, and mutants of this Salmonella pathogenicity island 2 type III effector replicate more efficiently in epithelial cells. Here we demonstrate that enhanced replication of sifA mutants occurs in the cytosol of these cells. Increased replication of wild-type bacteria was also observed in cells treated with wortmannin or expressing Rab5 Q79L or Rab7 N125I, all of which caused a loss of SCV integrity. Our findings demonstrate the requirement of the host cell endosomal system for maintenance of the SCV and that loss of this compartment allows increased replication of serovar Typhimurium in the cytosol of epithelial cells.


2008 ◽  
Vol 76 (3) ◽  
pp. 1048-1058 ◽  
Author(s):  
A. P. White ◽  
D. L. Gibson ◽  
G. A. Grassl ◽  
W. W. Kay ◽  
B. B. Finlay ◽  
...  

ABSTRACT The Salmonella rdar (red, dry, and rough) morphotype is an aggregative and resistant physiology that has been linked to survival in nutrient-limited environments. Growth of Salmonella enterica serovar Typhimurium was analyzed in a variety of nutrient-limiting conditions to determine whether aggregation would occur at low cell densities and whether the rdar morphotype was involved in this process. The resulting cultures consisted of two populations of cells, aggregated and nonaggregated, with the aggregated cells preferentially displaying rdar morphotype gene expression. The two groups of cells could be separated based on the principle that aggregated cells were producing greater amounts of thin aggregative fimbriae (Tafi or curli). In addition, the aggregated cells retained some physiological characteristics of the rdar morphotype, such as increased resistance to sodium hypochlorite. Competitive infection experiments in mice showed that nonaggregative ΔagfA cells outcompeted rdar-positive wild-type cells in all tissues analyzed, indicating that aggregation via the rdar morphotype was not a virulence adaptation in Salmonella enterica serovar Typhimurium. Furthermore, in vivo imaging experiments showed that Tafi genes were not expressed during infection but were expressed once Salmonella was passed out of the mice into the feces. We hypothesize that the primary role of the rdar morphotype is to enhance Salmonella survival outside the host, thereby aiding in transmission.


2007 ◽  
Vol 75 (11) ◽  
pp. 5346-5352 ◽  
Author(s):  
Bruce D. McCollister ◽  
Jesse T. Myers ◽  
Jessica Jones-Carson ◽  
Dennis R. Voelker ◽  
Andrés Vázquez-Torres

ABSTRACT We have identified acid sphingomyelinase (ASM) as an important player in the early and late anti-Salmonella activity of macrophages. A functional ASM participated in the killing activity of macrophages against wild-type Salmonella enterica serovar Typhimurium. The role of ASM in early macrophage killing of Salmonella appears to be linked to an active NADPH phagocyte oxidase enzymatic complex, since the flavoprotein inhibitor diphenyleneiodonium not only blocked a productive respiratory burst but also abrogated the survival advantage of Salmonella in macrophages lacking ASM. Lack of ASM activity also increased the intracellular survival of an isogenic ΔspiC::FRT Salmonella strain deficient in a translocator and effector of the Salmonella pathogenicity island 2 (SPI2) type III secretion system, suggesting that the antimicrobial activity associated with ASM is manifested regardless of the SPI2 status of the bacteria. Constitutively expressed ASM is responsible for the role that this lipid-metabolizing hydrolase plays in the innate host defense of macrophages against Salmonella. Accordingly, the ASM activity and intracellular concentration and composition of ceramide, gangliosides, and neutral sphingolipids did not increase upon Salmonella infection. Salmonella triggered, nonetheless, a significant increase in the secreted fraction of ASM. Collectively, these findings have elucidated a novel role for constitutive ASM in the anti-Salmonella activity of murine macrophages.


2013 ◽  
Vol 81 (6) ◽  
pp. 1952-1963 ◽  
Author(s):  
Michael D. Lovelace ◽  
May Lin Yap ◽  
Jana Yip ◽  
William Muller ◽  
Odilia Wijburg ◽  
...  

ABSTRACTPECAM-1/CD31 is known to regulate inflammatory responses and exhibit pro- and anti-inflammatory functions. This study was designed to determine the functional role of PECAM-1 in susceptibility to murine primaryin vivoinfection withSalmonella entericaserovar Typhimurium and inin vitroinflammatory responses of peritoneal macrophages. Lectin profiling showed that cellular PECAM-1 and recombinant human PECAM-1-Ig chimera contain high levels of mannose sugars andN-acetylglucosamine. Consistent with this carbohydrate pattern, both recombinant human and murine PECAM-1-Ig chimeras were shown to bindS. Typhimurium in a dose-dependent mannerin vitro. Using oral and fecal-oral transmission models ofS. Typhimurium SL1344 infection, PECAM-1−/−mice were found to be more resistant toS. Typhimurium infection than wild-type (WT) C57BL/6 mice. While fecal shedding ofS. Typhimurium was comparable in wild-type and PECAM-1−/−mice, the PECAM-1-deficient mice had lower bacterial loads in systemic organs such as liver, spleen, and mesenteric lymph nodes than WT mice, suggesting that extraintestinal dissemination was reduced in the absence of PECAM-1. This reduced bacterial load correlated with reduced tumor necrosis factor (TNF), interleukin-6 (IL-6), and monocyte chemoattractant protein (MCP) levels in sera of PECAM-1−/−mice. Followingin vitrostimulation of macrophages with either wholeS. Typhimurium, lipopolysaccharide (LPS) (Toll-like receptor 4 [TLR4] ligand), or poly(I·C) (TLR3 ligand), production of TNF and IL-6 by PECAM-1−/−macrophages was reduced. Together, these results suggest that PECAM-1 may have multiple functions in resistance to infection withS. Typhimurium, including binding to host cells, extraintestinal spread to deeper tissues, and regulation of inflammatory cytokine production by infected macrophages.


2004 ◽  
Vol 186 (4) ◽  
pp. 1215-1219 ◽  
Author(s):  
Kristin Ehrbar ◽  
Siegfried Hapfelmeier ◽  
Bärbel Stecher ◽  
Wolf-Dietrich Hardt

ABSTRACT The Salmonella effector protein SopA is translocated into host cells via the SPI-1 type III secretion system (TTSS) and contributes to enteric disease. We found that the chaperone InvB binds to SopA and slightly stabilizes it in the bacterial cytosol and that it is required for its transport via the SPI-1 TTSS.


Sign in / Sign up

Export Citation Format

Share Document