scholarly journals TheListeria monocytogenes lemA Gene Product Is Not Required forIntracellular Infection or To Activate fMIGWII-Specific TCells

2003 ◽  
Vol 71 (12) ◽  
pp. 6721-6727 ◽  
Author(s):  
Sarah E. F. D'Orazio ◽  
Marisela Velasquez ◽  
Nadia R. Roan ◽  
Olaia Naveiras-Torres ◽  
Michael N. Starnbach

ABSTRACT Clearance of the intracellular bacterial pathogen Listeria monocytogenes requires antigen-specific CD8+ T cells. Recently it was shown that activation of class Ib major histocompatibility complex (MHC)-restricted CD8+ T cells alone is sufficient for immune protection against listeriae. A major component of the class Ib MHC-restricted T-cell response is T cells that recognize formylated peptide antigens presented by M3 molecules. Although three N-formylated peptides derived from L. monocytogenes are known to bind to M3 molecules, fMIGWII is the immunodominant epitope presented by M3 during infection of mice. The source of fMIGWII peptide is the L. monocytogenes lemA gene, which encodes a 30-kDa protein of unknown function. In this report, we describe the generation of two L. monocytogenes lemA deletion mutants. We show that lemA is not required for growth of listeriae in tissue culture cells or for virulence during infection of mice. Surprisingly, we found that fMIGWII-specific T cells were still primed following infection with lemA mutant listeriae, suggesting that L. monocytogenes contains at least one additional antigen that is cross-reactive with the fMIGWII epitope. This cross-reactive antigen appears to be a small protease-resistant molecule that is secreted by L. monocytogenes.

1993 ◽  
Vol 177 (6) ◽  
pp. 1791-1796 ◽  
Author(s):  
F A Harding ◽  
J P Allison

The activation requirements for the generation of CD8+ cytotoxic T cells (CTL) are poorly understood. Here we demonstrate that in the absence of exogenous help, a CD28-B7 interaction is necessary and sufficient for generation of class I major histocompatibility complex-specific CTL. Costimulation is required only during the inductive phase of the response, and not during the effector phase. Transfection of the CD28 counter receptor, B7, into nonstimulatory P815 cells confers the ability to elicit P815-specific CTL, and this response can be inhibited by anti-CD28 Fab or by the chimeric B7-binding protein CTLA4Ig. Anti-CD28 monoclonal antibody (mAb) can provide a costimulatory signal to CD8+ T cells when the costimulatory capacity of splenic stimulators is destroyed by chemical fixation. CD28-mediated signaling provokes the release of interleukin 2 (IL-2) from the CD8+ CTL precursors, as anti-CD28 mAb could be substituted for by the addition of IL-2, and an anti-IL-2 mAb can block the generation of anti-CD28-induced CTL. CD4+ cells are not involved in the costimulatory response in the systems examined. We conclude that CD8+ T cell activation requires two signals: an antigen-specific signal mediated by the T cell receptor, and an additional antigen nonspecific signal provided via a CD28-B7 interaction.


Author(s):  
T. Jardetzky

The initiation and maintenance of an immune response to pathogens requires the interactions of cells and proteins that together are able to distinguish appropriate non-self targets from the myriadof self-proteins (Janeway and Bottomly, 1994). This discrimination between self and non-self is in part accomplished by three groups of proteins of the immune system that have direct and specific interactions with antigens: antibodies, T cell receptors (TcR) and major histocompatibility complex (MHC) proteins. Antibodies and TcR molecules are clonally expressed by the B and T cells of the immune system, respectively, defining each progenitor cell with a unique specificity for antigen. In these cell types both antibodies and TcR proteins undergo similar recombination events to generate a variable antigen combining site and thus produce a nearly unlimited number of proteins of different specificities. TcR molecules are further selected to recognize antigenic peptides bound to MHC proteins, during a process known as thymic selection, restricting the repertoire of T cells to the recognition of antigens presented by cells that express MHC proteins at their surface. Thymic selection of TcR and the subsequent restricted recognition of peptide-MHC complexes by peripheral T cells provides a fundamental molecular basis for the discrimination of self from non-sell and the regulation of the immune response (Allen, 1994; Nossal, 1994; von Boehmer, 1994). For example, different classes of T cells are used to recognize and kill infected cells (cytotoxic T cells) arid to provide lymphokiries that induce the niajority of soluble antibody responses of B cells (helper T cells). In contrast to the vast combinatorial and clonal diversity of antibodies and TcRs, a small set of MHC molecules is used to recognize a potentially unlimited universe of foreign peptide antigens for antigen presentation to T cells (Germain, 1994). This poses the problem of how each MHC molecule is capable of recognizing enough peptides to insure an immune response to pathogens. In addition, the specificity of the TcR interaction with MHC-peptide complexes is clearly crucial to the problem of self :non-self discrimination, with implications for both protective immunity and auto-immune disease.


2007 ◽  
Vol 75 (11) ◽  
pp. 5200-5209 ◽  
Author(s):  
Florence Dzierszinski ◽  
Marion Pepper ◽  
Jason S. Stumhofer ◽  
David F. LaRosa ◽  
Emma H. Wilson ◽  
...  

ABSTRACT Challenge with the intracellular protozoan parasite Toxoplasma gondii induces a potent CD8+ T-cell response that is required for resistance to infection, but many questions remain about the factors that regulate the presentation of major histocompatibility complex class I (MHC-I)-restricted parasite antigens and about the role of professional and nonprofessional accessory cells. In order to address these issues, transgenic parasites expressing ovalbumin (OVA), reagents that track OVA/MHC-I presentation, and OVA-specific CD8+ T cells were exploited to compare the abilities of different infected cell types to stimulate CD8+ T cells and to define the factors that contribute to antigen processing. These studies reveal that a variety of infected cell types, including hematopoietic and nonhematopoietic cells, are capable of activating an OVA-specific CD8+ T-cell hybridoma, and that this phenomenon is dependent on the transporter associated with antigen processing and requires live T. gondii. Several experimental approaches indicate that T-cell activation is a consequence of direct presentation by infected host cells rather than cross-presentation. Surprisingly, nonprofessional antigen-presenting cells (APCs) were at least as efficient as dendritic cells at activating this MHC-I-restricted response. Studies to assess whether these cells are involved in initiation of the CD8+ T-cell response to T. gondii in vivo show that chimeric mice expressing MHC-I only in nonhematopoietic compartments are able to activate OVA-specific CD8+ T cells upon challenge. These findings associate nonprofessional APCs with the initial activation of CD8+ T cells during toxoplasmosis.


Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 827-837 ◽  
Author(s):  
BR Blazar ◽  
PA Taylor ◽  
A Panoskaltsis-Mortari ◽  
TA Barrett ◽  
JA Bluestone ◽  
...  

Although T-cell receptor (TCR) alpha/beta expressing cells have a well- known role in graft-versus-host disease (GVHD) generation, the role of TCR gamma/delta expressing cells in this process has remained unclear. To elucidate the potential function of TCR gamma/delta cells in GVHD, we have used transgenic (Tg) H-2d mice (termed G8) that express gamma/delta heterodimers on a high proportion of peripheral T cells. In vitro, G8 Tg gamma/delta T cells proliferate to and kill C57BL/6 (B6) (H-2b) which express gene products (T10b and T22b) from the nonclassical major histocompatibility complex (MHC) class Ib H-2T region. The infusion of G8 Tg (H-2Td) TCR gamma/delta cells into lethally irradiated [900 cGy total body irradiation (TBI)] B6 (H-2b) mice resulted in the generation of lethal GVHD characterized histologically by destruction of the spleen, liver, lung, and colon. Lethal GVHD was prevented by the injection of anti-TCR gamma/delta monoclonal antibodies. Immunohistochemical analysis of B6 recipients post-bone marrow transplantation (BMT) confirmed that G8 Tg TCR gamma/delta cells infiltrated GVHD target tissues (skin, liver, colon, and lung) and were absent in recipients treated with anti-TCR gamma/delta monoclonal antibodies (MoAbs) but not anti-CD4 plus anti- CD8 MoAbs. In contrast, injection of TCR gamma/delta+ cells into irradiated (900 cGy TBI) B6.A-TIaa BoyEg mice that do not express either T10b or T22b did not induce lethal GVHD. Similarly, in a different GVHD system in which sublethal irradiation without bone marrow (BM) rescue was used, B6 but not B6.A-TIaa/BoyEg mice were found to be susceptible to TCR gamma delta+ cell mediated GVHD-induced lethality characterized by an aplasia syndrome. These results demonstrate that TCR gamma/delta cells have the capacity to cause acute lethal GVHD in mice and suggest that nonclassical MHC class Ib gene products expressed on GVHD target organs are responsible for G8 Tg TCR gamma/delta+ cell mediated lethality.


1997 ◽  
Vol 186 (6) ◽  
pp. 899-908 ◽  
Author(s):  
Silvia Corinti ◽  
Raffaele De Palma ◽  
Angelo Fontana ◽  
Maria Cristina Gagliardi ◽  
Carlo Pini ◽  
...  

We have isolated CD8+ α/β T cells from the blood of atopic and healthy individuals which recognize a nonpeptide antigen present in an allergenic extract from Parietaria judaica pollen. This antigen appears to be a carbohydrate because it is resistant to proteinase K and alkaline digestion, is hydrophilic, and is sensitive to trifluoromethane-sulphonic and periodic acids. In addition, on a reverse-phase high performance liquid chromatography column the antigen recognized by CD8+ T cells separates in a fraction which contains >80% hexoses (glucose and galactose) and undetectable amounts of proteins. Presentation of this putative carbohydrate antigen (PjCHOAg) to CD8+ T cell clones is dependent on live antigen presenting cells (APCs) pulsed for >1 h at 37°C, suggesting that the antigen has to be internalized and possibly processed. Indeed, fixed APCs or APCs pulsed at 15°C were both unable to induce T cell response. Remarkably, PjCHOAg presentation is independent of the expression of classical major histocompatibility complex (MHC) molecules or CD1. CD8+ T cells stimulated by PjCHOAg-pulsed APCs undergo a sustained [Ca2+]i increase and downregulate their T cell antigen receptors (TCRs) in an antigen dose– and time-dependent fashion, similar to T cells stimulated by conventional ligands. Analysis of TCR Vβ transcripts shows that six independent PjCHOAg-specific T cell clones carry the Vβ8 segment with a conserved motif in the CDR3 region, indicating a structural requirement for recognition of this antigen. Finally, after activation, the CD8+ clones from the atopic patient express CD40L and produce high levels of interleukins 4 and 5, suggesting that the clones may have undergone a Th2-like polarization in vivo. These results reveal a new class of antigens which triggers T cells in an MHC-independent way, and these antigens appear to be carbohydrates. We suggest that this type of antigen may play a role in the immune response in vivo.


2008 ◽  
Vol 205 (7) ◽  
pp. 1647-1657 ◽  
Author(s):  
Phillip A. Swanson ◽  
Christopher D. Pack ◽  
Annette Hadley ◽  
Chyung-Ru Wang ◽  
Iwona Stroynowski ◽  
...  

Although immunity against intracellular pathogens is primarily provided by CD8 T lymphocytes that recognize pathogen-derived peptides presented by major histocompatibility complex (MHC) class Ia molecules, MHC class Ib–restricted CD8 T cells have been implicated in antiviral immunity. Using mouse polyoma virus (PyV), we found that MHC class Ia–deficient (Kb−/−Db−/−) mice efficiently control this persistently infecting mouse pathogen. CD8 T cell depletion mitigates clearance of PyV in Kb−/−Db−/− mice. We identified the ligand for PyV-specific CD8 T cells in Kb−/−Db−/− mice as a nonamer peptide from the VP2 capsid protein presented by Q9, a member of the β2 microglobulin–associated Qa-2 family. Using Q9-VP2 tetramers, we monitored delayed but progressive expansion of these antigen-specific CD8αβ T cells in Kb−/−Db−/− mice. Importantly, we demonstrate that Q9-VP2–specific CD8 T cells more effectively clear wild-type PyV than a VP2 epitopenull mutant PyV. Finally, we show that wild-type mice also generate Q9-restricted VP2 epitope–specific CD8 T cells to PyV infection. To our knowledge, this is the first evidence for a defined MHC class Ib–restricted antiviral CD8 T cell response that contributes to host defense. This study motivates efforts to uncover MHC class Ib–restricted CD8 T cell responses in other viral infections, and given the limited polymorphism of MHC class Ib molecules, it raises the possibility of developing peptide-based viral vaccines having broad coverage across MHC haplotypes.


2005 ◽  
Vol 73 (12) ◽  
pp. 8002-8008 ◽  
Author(s):  
S. Ugrinovic ◽  
C. G. Brooks ◽  
J. Robson ◽  
B. A. Blacklaws ◽  
C. E. Hormaeche ◽  
...  

ABSTRACT Salmonella enterica serovar Typhimurium causes a typhoid-like disease in mice which has been studied extensively as a model for typhoid fever in humans. CD8 T cells contribute to protection against S. enterica serovar Typhimurium in mice, but little is known about the specificity and major histocompatibility complex (MHC) restriction of the response. We report here that CD8 T-cell lines derived from S. enterica serovar Typhimurium-infected BALB/c mice lysed bone marrow macrophages infected with S. enterica serovar Typhimurium or pulsed with proteins from S. enterica serovar Typhimurium culture supernatants. Cytoxicity was beta-2-microglobulin dependent and largely TAP dependent, although not MHC class Ia restricted, as target cells of several different MHC haplotypes were lysed. The data suggested the participation of class Ib MHC molecules although no evidence for the presence of Qa1-restricted T cells could be found, unlike in previous reports. Instead, the T-cell lines lysed H2-M3-transfected fibroblasts infected with S. enterica serovar Typhimurium SL3261 or treated with Salmonella culture supernatants. Thus, this report increases the number of MHC class Ib antigen-presenting molecules known for Salmonella antigens to three: Qa-1, HLA-E, and now H2-M3. It also expands the range of pathogens that induce H2-M3-restricted CD8 T cells to include an example of gram-negative bacteria.


1996 ◽  
Vol 183 (2) ◽  
pp. 535-546 ◽  
Author(s):  
K D Moudgil ◽  
I S Grewal ◽  
P E Jensen ◽  
E E Sercarz

A self-peptide containing amino acid residues 46-61 (NRGDQSTDYGIFQINSR) of mouse lysozyme (ML) (p46-61, which binds strongly to the A(k) molecule but does not bind to the E(k) molecule), can induce a strong proliferative T cell response in CBA/J mice (A[k], E[k]) but no response at all in B10.A(4R) and CBA/J mice. The critical residues within p46-59 are immunogenic in both B10.A(4R) and CBA/J mice. The critical residues within p46-61 reside between amino acid positions 51 and 59. T cells of B10.A(4R) mice primed with the truncated peptides in vivo cannot be restimulated by p46-61 in vitro. This suggests that T cell receptor (TCR) contact (epitopic) residue(s) flanking the minimal 51-59 determinant within p46-61 hinder the interaction of the p46-61/A(k) complex with the appropriate TCR(S), thereby causing a lack of proliferative T cell response in this mouse strain. Unlike B10.A(4R) mice, [B10.A(4R) x CBA/J]F1 mice responded vigorously to p46-61, suggesting that thymic APC of B10.A(4R) mice do not present a self ligand to T cells resulting in a p46-61-specific hole in the T cell repertoire in B10.A(4R) or the F1 mice. Moreover, APC from B10.A(4R) mice are capable of efficiently presenting p46-61 to peptide-specific T cell lines from CBA/J mice. The proliferative unresponsiveness of B10.A(4R) mice to p46-61 is not due to non-major histocompatibility complex genes because B10.A mice (A[k], E[k]) respond well to p46-61. Interestingly, B10.A(4R) mice can raise a good proliferative response to p46-61 (R61A) (in which the arginine residue at position 61 (R61L/F/N/K), indicating that R61 was indeed responsible for hindering the interaction of p46-61 with the appropriate TCR. Finally, chimeric mice [B10.A(4R)-->B10.A] responded vigorously to p46-61, suggesting that thymic antigen presentation environment of the B10.A mouse was critical for development of a p46-61-reactive T cell repertoire. Thus, we provide experimental demonstration of a novel mechanism for unresponsiveness to a self peptide, p46-61, in the B10.A(4R) mouse owing to hindrance: in this system it is the interaction between the available TCR and the A(k)/p46-61 complex, which is hindered by epitopic residue(s) within p46-61. We argue that besides possessing T cells that are hindered by R61 of p46-61, CBA/J and B10.A mice have developed an additional subset of T cells bearing TCRs which are not hinderable by R61, presumably through positive selection with peptides derived from class II E(k), or class I D(k)/D(d) molecules. These results have important implications in self tolerance, shaping of the T cell repertoire, and in defining susceptibility to autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document