scholarly journals Porphyromonasgingivalis Lipopolysaccharide Antagonizes Escherichiacoli Lipopolysaccharide at Toll-Like Receptor 4 in HumanEndothelialCells

2003 ◽  
Vol 71 (12) ◽  
pp. 6799-6807 ◽  
Author(s):  
Stephen R. Coats ◽  
Robert A. Reife ◽  
Brian W. Bainbridge ◽  
Thu-Thao T. Pham ◽  
Richard P. Darveau

ABSTRACT E. coli lipopolysaccharide (LPS) induces cytokine and adhesion molecule expression via the toll-like receptor 4 (TLR4) signaling complex in human endothelial cells. In the present study, we investigated the mechanism by which Porphyromonas gingivalis LPS antagonizes E. coli LPS-dependent activation of human endothelial cells. P. gingivalis LPS at 1 μg/ml inhibited both E. coli LPS (10 ng/ml) and Mycobacterium tuberculosis heat shock protein (HSP) 60.1 (10 μg/ml) stimulation of E-selectin mRNA expression in human umbilical vein endothelial cells (HUVEC) without inhibiting interleukin-1 beta (IL-1β) stimulation. P. gingivalis LPS (1μ g/ml) also blocked both E. coli LPS-dependent and M. tuberculosis HSP60.1-dependent but not IL-1β-dependent activation of NF-κB in human microvascular endothelial (HMEC-1) cells, consistent with antagonism occurring upstream from the TLR/IL-1 receptor adaptor protein, MyD88. Surprisingly, P. gingivalis LPS weakly but significantly activated NF-κB in HMEC-1 cells in the absence of E. coli LPS, and the P. gingivalis LPS-dependent agonism was blocked by transient expression of a dominant negative murine TLR4. Pretreatment of HUVECs with P. gingivalis LPS did not influence the ability of E. coli LPS to stimulate E-selectin mRNA expression. Taken together, these data provide the first evidence that P. gingivalis LPS-dependent antagonism of E. coli LPS in human endothelial cells likely involves the ability of P. gingivalis LPS to directly compete with E. coli LPS at the TLR4 signaling complex.

2011 ◽  
Vol 300 (5) ◽  
pp. H1743-H1752 ◽  
Author(s):  
Ying Wang ◽  
Ming Xiang Zhang ◽  
Xiao Meng ◽  
Fu Qiang Liu ◽  
Guang Sheng Yu ◽  
...  

In the present study, we tested our hypothesis that atorvastatin exerts its anti-inflammation effect via suppressing LPS-induced rapid upregulation of Toll-like receptor 4 (TLR4) mRNA and its downstream p38, ERK, and NF-κB signaling pathways in human umbilical-vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). TLR4 mRNA expression and its downstream kinase activities induced by LPS alone or atorvastatin + LPS in endothelial cells were quantified using quantitative real-time PCR and enzyme-linked immunosorbent assay. Preincubation of LPS-stimulated endothelial cells with TLR4 siRNA was conducted to identify the target of the anti-inflammatory effects of atorvastatin. Atorvastatin incubation resulted in the reduction of LPS-induced TLR4 mRNA expression, ERK1/2 and P38 MAPK phosphorylation, and NF-κB binding activity. Pretreatment with MEK/ERK1/2 inhibitor PD98059 attenuated atorvastatin + LPS-induced NF-κB activity but had no effect on P38 MAPK phosphorylation. In contrast, pretreatment with P38 MAPK inhibitor SB203580 resulted in upregulation of atorvastatin + LPS-induced ERK1/2 phosphorylation but had no significant effects on NF-κB activity. On the other hand, blocking NF-κB with SN50 produced no effects on atorvastatin + LPS-induced ERK1/2 and P38 MAPK phosphorylation. Moreover, TLR4 gene silencing produced the same effects as the atorvastatin treatment. In conclusion, atorvastatin downregulated TLR4 mRNA expression by two distinct signaling pathways. First, atorvastatin stabilized Iκ-Bα, which directly inhibited NF-κB activation. Second, atorvastatin inactivated ERK phosphorylation, which indirectly inhibited NF-κB activation. Suppression of p38 MAPK by atorvastatin upregulates ERK but exerts no effect on NF-κB.


2005 ◽  
Vol 73 (1) ◽  
pp. 532-545 ◽  
Author(s):  
Jill R. Schurr ◽  
Erana Young ◽  
Pat Byrne ◽  
Chad Steele ◽  
Judd E. Shellito ◽  
...  

ABSTRACT Toll-like receptor 4 (TLR4) has been identified as a receptor for lipopolysaccharide. However, the precise role of TLR4 in regulating gene expression in response to an infection caused by gram-negative bacteria has not been fully elucidated. The role of TLR4 signaling in coordinating gene expression was assessed by gene expression profiling in lung tissue in a mouse model of experimental pneumonia with a low-dose infection of Klebsiella pneumoniae. We analyzed four mouse strains: C57BL/6 mice, which are resistant to bacterial dissemination; 129/SvJ mice, which are susceptible; C3H/HeJ mice, which are susceptible and have defective TLR4 signaling; and their respective control strain, C3H/HeN (intermediate resistance). At 4 h after infection, C57BL/6 and C3H/HeN mice demonstrated the greatest number of genes, with 67 shared induced genes which were TLR4 dependent and highly associated with the resistance phenotype. These genes included cytokine and chemokine genes required for neutrophil activation or recruitment, growth factor receptors, MyD88 (a critical adaptor protein for TLR signaling), and adhesion molecules. TLR4 signaling accounted for over 74% of the gene expression in the C3H background. These data suggest that early TLR4 signaling controls the vast majority of gene expression in the lung in response to an infection caused by gram-negative bacteria and that this subsequent gene expression determines survival of the host.


2006 ◽  
Vol 291 (4) ◽  
pp. H1900-H1909 ◽  
Author(s):  
Xinsheng Zhu ◽  
Huailong Zhao ◽  
Amanda R. Graveline ◽  
Emmanuel S. Buys ◽  
Ulrich Schmidt ◽  
...  

Innate immune system such as Toll-like receptor 4 (TLR4) represents the first line of defense against infection. In addition to its pivotal role in host immunity, recent studies have suggested that TLR4 may play a broader role in mediating tissue inflammation and cell survival in response to noninfectious injury. We and other investigators have reported that cardiac TLR4 signaling is dynamically modulated in ischemic myocardium and that activation of TLR4 confers a survival benefit in the heart and in isolated cardiomyocytes. However, the signaling pathways leading to these effects are not completely understood. Here, we investigate the role of MyD88, an adaptor protein of TLR4 signaling, and inducible nitric oxide synthase (NOS2) in mediating TLR4-induced cardiomyocyte survival in an in vitro model of apoptosis. Serum deprivation induced a significant increase in the number of apoptotic cardiomyocytes as demonstrated by transferase-mediated dUTP nick-end labeling (TUNEL) assay, nuclear morphology, DNA laddering, and DNA-histone ELISA. Lipopolysaccharide (LPS), a TLR4 agonist, activated TLR4 signaling and led to significant reduction in apoptotic cardiomyocytes and improved cellular function of surviving cardiomyocytes with enhanced Ca2+ transients and cell shortening. We found that both TLR4 and MyD88 are required for the LPS-induced beneficial effects as demonstrated by improved survival and function in wild-type but not in TLR4−/− or MyD88−/− cardiomyocytes. Moreover, genetic deletion or pharmacological inhibition of NOS2 abolished survival and functional rescue of cardiomyocytes treated with LPS. Taken together, these data suggest that TLR4 protects cardiomyocytes from stress-induced injury through MyD88- and NOS2-dependent mechanisms.


Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2605-2613 ◽  
Author(s):  
Shinae Kang ◽  
Seung-Pyo Lee ◽  
Kyung Eun Kim ◽  
Hak-Zoo Kim ◽  
Sylvie Mémet ◽  
...  

The lymphatic vessel is a major conduit for immune cell transport; however, little is known about how lymphatic vessels regulate immune cell trafficking and how lymphatic vessels themselves respond to inflammation. Toll-like receptor 4 (TLR4) plays a central role in lipopolysaccharide (LPS)–induced inflammation, but the role of TLR4 in lymphatic endothelial cells (LECs) is poorly understood. Here, we found that LECs express high amounts of TLR4 in the intracellular region, and that the TLR4 of LECs is the main mediator of nuclear factor–κB (NF-κB) activation by LPS. LPS-TLR4 signaling in LECs resulted in the production of various chemokines for chemotaxis of macrophage. In addition, TLR4 in LECs actively contributed to the recruitment of macrophages to the draining lymphatic vessel. Furthermore, the macrophages that infiltrated into the lymphatic vessel induced lymphangiogenesis by secreting lymphangiogenic growth factors. These phenomena were largely attenuated not only in the mice defective in TLR4 signaling but also in the chimeric mice defective in TLR4 signaling that were recipients for bone marrow transplantation from normal TLR4-signaling mice. In conclusion, TLR4 in LECs plays an essential role in LPS-induced inflammatory lymphangiogenesis by chemotactic recruitment of macrophages.


2017 ◽  
Vol 25 (2) ◽  
pp. 185
Author(s):  
Laura Grasa ◽  
Sergio Gonzalo ◽  
Alba De Martino ◽  
María Divina Murillo

<p>The aim of this work was to evaluate the effects of lipopolysaccharide (LPS) from <em>Escherichia coli </em>O127:B8 on the expression of toll-like receptor 4 (TLR4), the histology, and motor function in rabbit ileum. Rabbits were injected intravenously with saline or LPS (100 μg/kg, 2 h). The mRNA expression and localization of TLR4 were determined by reverse transcriptase-PCR and immunofluorescence, respectively. Histological damage induced by LPS was evaluated in sections of ileum stained with haematoxylin and eosin. Contractility studies of ileum were performed in an organ bath. The mRNA expression of TLR4 decreased in the muscular but not in the mucosal layer of rabbits treated with LPS. TLR4 was localised in both the mucosal and muscular layers of rabbit ileum. LPS induced intestinal inflammation and altered the spontaneous contractions and the serotonin-, acetylcholine- and KCl-induced contractions. In conclusion, LPS from <em>E. coli </em>O127:B8 induced a decrease in the mRNA expression of TLR4, an inflammatory response, and changes in the contractility of rabbit ileum.</p>


2004 ◽  
Vol 287 (6) ◽  
pp. C1605-C1615 ◽  
Author(s):  
Robert A. Frost ◽  
Gerald J. Nystrom ◽  
Charles H. Lang

The inducible form of nitric oxide synthase (NOS2) catalyzes the synthesis of nitric oxide (NO) from arginine in response to injury and infection. NOS2 is expressed predominantly by macrophages and lymphocytes. However, skeletal muscle also expresses NOS2 in response to inflammatory stimuli. The present study sought to determine whether lipopolysaccharide (LPS) stimulates NOS2 in skeletal muscle via Toll-like receptor-4 (TLR4). Intraperitoneal injection of LPS in wild-type mice (C3H/HeSnJ) increased NOS2 mRNA fourfold in skeletal muscle, while no change in NOS2 mRNA was observed in C3H/HeJ mice that harbored a mutation in the LPS receptor. NOS2 coimmunoprecipitated with the muscle-specific caveolin-3 protein, suggesting that myofibers per se respond to LPS in vivo. LPS stimulated NOS2 mRNA expression in C2C12myocytes, and the regulation of NOS2 mRNA was comparable in myoblasts and differentiated myotubes. LPS transiently stimulated the phosphorylation of the interleukin-1 receptor-associated kinase (IRAK-1) in C2C12cells and decreased the total amount of IRAK-1 both in vitro and in vivo over time. LPS stimulated the expression of an NF-κβ reporter plasmid, and this was inhibited by the proteasomal inhibitor MG-132. Both myoblasts and myotubes expressed TLR2 and TLR4 mRNA. Expression of a dominant negative form of TLR4 in C2C12cells blocked LPS-induced NF-κβ reporter activity. SP-600125 [a c-Jun NH2-terminal kinase (JNK) inhibitor] also prevented LPS stimulation of NOS2 expression. Moreover, the JNK inhibitor prevented the LPS-induced increase in NO synthesis. These data indicate that LPS increases NOS2 mRNA expression in muscle via a TLR4-dependent mechanism.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
C. Keith Cassidy ◽  
Benjamin A. Himes ◽  
Dapeng Sun ◽  
Jun Ma ◽  
Gongpu Zhao ◽  
...  

AbstractTo enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism.


Sign in / Sign up

Export Citation Format

Share Document