scholarly journals Sialylation of Lipooligosaccharides Promotes Biofilm Formation by Nontypeable Haemophilus influenzae

2004 ◽  
Vol 72 (1) ◽  
pp. 106-113 ◽  
Author(s):  
W. Edward Swords ◽  
Miranda L. Moore ◽  
Luciana Godzicki ◽  
Gail Bukofzer ◽  
Michael J. Mitten ◽  
...  

ABSTRACT Nontypeable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract infections, including otitis media and bronchitis. The persistence of NTHi in vivo is thought to involve bacterial persistence in a biofilm community. Therefore, there is a need for further definition of bacterial factors contributing to biofilm formation by NTHi. Like other bacteria inhabiting host mucosal surfaces, NTHi has on its surface a diverse array of lipooligosaccharides (LOS) that influence host-bacterial interactions. In this study, we show that LOS containing sialic (N-acetyl-neuraminic) acid promotes biofilm formation by NTHi in vitro and bacterial persistence within the middle ear or lung in vivo. LOS from NTHi in biofilms was sialylated, as determined by comparison of electrophoretic mobilities and immunochemical reactivities before and after neuraminidase treatment. Biofilm formation was significantly reduced in media lacking sialic acid, and a siaB (CMP-sialic acid synthetase) mutant was deficient in biofilm formation in three different in vitro model systems. The persistence of an asialylated siaB mutant was attenuated in a gerbil middle ear infection model system, as well as in a rat pulmonary challenge model system. These data show that sialylated LOS glycoforms promote biofilm formation by NTHi and persistence in vivo.

2005 ◽  
Vol 73 (6) ◽  
pp. 3210-3218 ◽  
Author(s):  
Joseph Jurcisek ◽  
Laura Greiner ◽  
Hiroshi Watanabe ◽  
Anthony Zaleski ◽  
Michael A. Apicella ◽  
...  

ABSTRACT Nontypeable Haemophilus influenzae (NTHI) is an important pathogen in respiratory tract infections, including otitis media (OM). NTHI forms biofilms in vitro as well as in the chinchilla middle ear, suggesting that biofilm formation in vivo might play an important role in the pathogenesis and chronicity of OM. We've previously shown that SiaA, SiaB, and WecA are involved in biofilm production by NTHI in vitro. To investigate whether these gene products were also involved in biofilm production in vivo, NTHI strain 2019 and five isogenic mutants with deletions in genes involved in carbohydrate biosynthesis were inoculated into the middle ears of chinchillas. The wild-type strain formed a large, well-organized, and viable biofilm; however, the wecA, lsgB, siaA, pgm, and siaB mutants were either unable to form biofilms or formed biofilms of markedly reduced mass, organization, and viability. Despite their compromised ability to form a biofilm in vivo, wecA, lsgB, and siaA mutants survived in the chinchilla, inducing culture-positive middle ear effusions, whereas pgm and siaB mutants were extremely sensitive to the bactericidal activity of chinchilla serum and thus did not survive. Lectin analysis indicated that sialic acid was an important component of the NTHI 2019 biofilm produced in vivo. Our data suggested that genes involved in carbohydrate biosynthesis and assembly play an important role in the ability of NTHI to form a biofilm in vivo. Collectively, we found that when modeled in a mammalian host, whereas biofilm formation was not essential for survivability of NTHI in vivo, lipooligosaccharide sialylation was indispensable.


2006 ◽  
Vol 74 (8) ◽  
pp. 4590-4597 ◽  
Author(s):  
Jennifer D. Boddicker ◽  
Rebecca A. Anderson ◽  
Jennifer Jagnow ◽  
Steven Clegg

ABSTRACT Klebsiella pneumoniae causes urinary tract infections, respiratory tract infections, and septicemia in susceptible individuals. Strains of Klebsiella frequently produce extended-spectrum beta-lactamases, and infections with these strains can lead to relatively high mortality rates (approximately 15%). Other virulence factors include production of an antiphagocytic capsule and outer membrane lipopolysaccharide (LPS), which mediates serum resistance, as well as fimbriae on the surface of the bacteria. Type 1 fimbriae mediate adherence to many types of epithelial cells and may facilitate adherence of the bacteria to the bladder epithelium. Type 3 fimbriae can bind in vitro to the extracellular matrix of urinary and respiratory tissues, suggesting that they mediate binding to damaged epithelial surfaces. In addition, type 3 fimbriae are required for biofilm formation by Klebsiella pneumoniae on plastics and human extracellular matrix; thus, they may facilitate the formation of treatment-resistant biofilm on indwelling plastic devices, such as catheters and endotracheal tubing. The presence of these devices may cause tissue damage, allowing Klebsiella to grow as a biofilm on exposed tissue basement membrane components. Though in vivo biofilm growth may be an important step in the infection process, little is known about the genetic factors required for biofilm formation by Klebsiella pneumoniae. Thus, we performed signature-tagged mutagenesis to identify factors produced by K. pneumoniae strain 43816 that are required for biofilm formation. We identified mutations in the cps capsule gene cluster, previously unidentified transcriptional regulators, fimbrial, and sugar phosphotransferase homologues, as well as genetic loci of unknown function, that affect biofilm formation.


2009 ◽  
Vol 77 (9) ◽  
pp. 4081-4091 ◽  
Author(s):  
Chelsie E. Armbruster ◽  
Wenzhou Hong ◽  
Bing Pang ◽  
Kristin E. Dew ◽  
Richard A. Juneau ◽  
...  

ABSTRACT Nontypeable Haemophilus influenzae (NTHI) is an extremely common airway commensal which can cause opportunistic infections that are usually localized to airway mucosal surfaces. During many of these infections, NTHI forms biofilm communities that promote persistence in vivo. For many bacterial species, density-dependent quorum-signaling networks can affect biofilm formation and/or maturation. Mutation of luxS, a determinant of the autoinducer 2 (AI-2) quorum signal pathway, increases NTHI virulence in the chinchilla model for otitis media infections. For example, bacterial counts in middle-ear fluids and the severity of the host inflammatory response were increased in luxS mutants compared with parental strains. As these phenotypes are consistent with those that we have observed for biofilm-defective NTHI mutants, we hypothesized that luxS may affect NTHI biofilms. A luxS mutant was generated using the well-characterized NTHI 86-028NP strain and tested to determine the effects of the mutation on biofilm phenotypes in vitro and bacterial persistence and disease severity during experimental otitis media. Quantitation of the biofilm structure by confocal microscopy and COMSTAT analysis revealed significantly reduced biomass for NTHI 86-028NP luxS biofilms, which was restored by a soluble mediator in NTHI 86-028NP supernatants. Analysis of lipooligosaccharide moieties using an enzyme-linked immunosorbent assay and immunoblotting showed decreased levels of biofilm-associated glycoforms in the NTHI 86-028NP luxS strain. Infection studies showed that NTHI 86-028NP luxS had a significant persistence defect in vivo during chronic otitis media infection. Based on these data, we concluded that a luxS-dependent soluble mediator modulates the composition of the NTHI lipooligosaccharides, resulting in effects on biofilm maturation and bacterial persistence in vivo.


BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 925 ◽  
Author(s):  
Paul W Whitby ◽  
Timothy M VanWagoner ◽  
Thomas W Seale ◽  
Daniel J Morton ◽  
Terrence L Stull

2020 ◽  
Author(s):  
Isabel Karkossa ◽  
Anne Bannuscher ◽  
Bryan Hellack ◽  
Wendel Wohlleben ◽  
Julie Laloy ◽  
...  

Abstract Background The immense variety and constant development of nanomaterials (NMs) raise the demand for a facilitated risk assessment, for which knowledge on NMs mode of actions (MoAs) is required. For this purpose, a comprehensive data basis is of paramountcy that can be obtained using omics. Furthermore, the establishment of suitable in vitro test systems is indispensable to follow the 3R concept and to master the high number of NMs. In the present study, we aimed at comparing NM effects in vitro and in vivo using a multi-omics approach. We applied an integrated data evaluation strategy based on proteomics and metabolomics to four silica NMs and one titanium dioxide-based NM. For in vitro investigations, alveolar epithelial cells and alveolar macrophages were treated with different doses of NMs, and the results were compared to effects on rat lungs after short-term inhalations and instillations at varying doses with and without a recovery period.Results Since the production of reactive oxygen species (ROS) is described to be a critical biological effect of NMs, and enrichment analyses confirmed oxidative stress as a significant effect upon NM treatment in vitro in the present study, we focused on different levels of oxidative stress. Thus, we found opposite changes for proteins and metabolites that are related to the production of reduced glutathione in alveolar epithelial cells and alveolar macrophages, illustrating that NMs MoAs depend on the used model system. Interestingly, in vivo, pathways related to inflammation were affected to a greater extent than oxidative stress responses. Hence, the assignment of the observed effects to the levels of oxidative stress was different in vitro and in vivo as well. However, the overall classification of “active” and “passive” NMs was consistent in vitro and in vivo.Conclusions The consistent classification indicates both tested cell lines to be suitable for NM toxicity assessment even though the induced levels of oxidative stress strongly depend on the used model systems. Thus, the here presented results highlight that model systems need to be carefully revised to decipher the extent to which they can replace in vivo testing.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi265-vi265
Author(s):  
Zev Binder ◽  
Sarah Hyun Ji Kim ◽  
Pei-Hsun Wu ◽  
Anjil Giri ◽  
Gary Gallia ◽  
...  

Abstract Current model systems used for GBM research include traditional in vitro cell line-based assays and in vivo animal studies. In vitro model systems offer the advantages of being easy to use, relatively inexpensive, and fast growing. However, these models lack key elements of the pathology they are attempting to model, including the biochemical and biophysical microenvironment and three-dimensional structure inherent to human brain tissue. In vivo model systems address these limitations, but have restrictions of their own. Species differences may result in non-applicable results and animal experiments are often not designed like clinical trials. Evidence of the limitations of current GBM models is found in the disparity between basic research findings and successful new treatments for GBMs in the clinic. Here we present an alternative model system for the study of human GBM cell motility and invasion, which features advantages of both in vitro and in vivo model systems. Using human organotypic brain slices as scaffolding for tumor growth, we explored the dynamic process of GBM cell invasion within human brain tissue. To demonstrate the utility of the model system, we investigated the effects of depletion of integrin α V (ITGAV) and CD44 on GBM cell motility. These two cell-surface proteins have been identified to have key functions in GBM cell motility. However, knockdown of ITGAV had little effect on tumor cell motility in organotypics while CD44 knockdown significantly reduced cell movement. Finally, we compare motility results from cells in human brain slices to those from cells growing on standard Matrigel and in mouse brain organotypics. We found significant differences in motility depending on the substrate in which the cells were moving. Our findings highlight the physiologic characteristics of human brain organotypics and demonstrate the use of real-time imaging in the ex vivo system.


2021 ◽  
Author(s):  
Isabel Karkossa ◽  
Anne Bannuscher ◽  
Bryan Hellack ◽  
Wendel Wohlleben ◽  
Julie Laloy ◽  
...  

Abstract Background: The immense variety and constant development of nanomaterials (NMs) raise the demand for a facilitated risk assessment, for which knowledge on NMs mode of actions (MoAs) is required. For this purpose, a comprehensive data basis is of paramountcy that can be obtained using omics. Furthermore, the establishment of suitable in vitro test systems is indispensable to follow the 3R concept and to master the high number of NMs. In the present study, we aimed at comparing NM effects in vitro and in vivo using a multi-omics approach. We applied an integrated data evaluation strategy based on proteomics and metabolomics to four silica NMs and one titanium dioxide-based NM. For in vitro investigations, rat alveolar epithelial cells (RLE-6TN) and rat alveolar macrophages (NR8383) were treated with different doses of NMs, and the results were compared to effects on rat lungs after short-term inhalations and instillations at varying doses with and without a recovery period.Results: Since the production of reactive oxygen species (ROS) is described to be a critical biological effect of NMs, and enrichment analyses confirmed oxidative stress as a significant effect upon NM treatment in vitro in the present study, we focused on different levels of oxidative stress. Thus, we found opposite changes for proteins and metabolites that are related to the production of reduced glutathione in alveolar epithelial cells and alveolar macrophages, illustrating that NMs MoAs depend on the used model system. Interestingly, in vivo, pathways related to inflammation were affected to a greater extent than oxidative stress responses. Hence, the assignment of the observed effects to the levels of oxidative stress was different in vitro and in vivo as well. However, the overall classification of “active” and “passive” NMs was consistent in vitro and in vivo.Conclusions: The consistent classification indicates both tested cell lines to be suitable for NM toxicity assessment even though the induced levels of oxidative stress strongly depend on the used model systems. Thus, the here presented results highlight that model systems need to be carefully revised to decipher the extent to which they can replace in vivo testing.


1998 ◽  
Vol 42 (12) ◽  
pp. 3193-3199 ◽  
Author(s):  
Valerie Berry ◽  
Christine E. Thorburn ◽  
Sarah J. Knott ◽  
Gary Woodnutt

ABSTRACT Comparative antibacterial efficacies of erythromycin, clarithromycin, and azithromycin were examined againstStreptococcus pneumoniae and Haemophilus influenzae, with amoxicillin-clavulanate used as the active control. In vitro, the macrolides at twice their MICs and at concentrations achieved in humans were bacteriostatic or reduced the numbers of viable S. pneumoniae slowly, whereas amoxicillin-clavulanate showed a rapid antibacterial effect. AgainstH. influenzae, erythromycin, clarithromycin, and clarithromycin plus 14-hydroxy clarithromycin at twice their MICs produced a slow reduction in bacterial numbers, whereas azithromycin was bactericidal. Azithromycin at the concentrations achieved in the serum of humans was bacteriostatic, whereas erythromycin and clarithromycin were ineffective. In experimental respiratory tract infections in rats, clarithromycin (equivalent to 250 mg twice daily [b.i.d.]) and amoxicillin-clavulanate (equivalent to 500 plus 125 mg b.i.d., respectively) were highly effective against S. pneumoniae, but azithromycin (equivalent to 500 and 250 mg once daily) was significantly less effective (P < 0.01). Against H. influenzae, clarithromycin treatment (equivalent to 250 or 500 mg b.i.d.) was similar to no treatment and was significantly less effective than amoxicillin-clavulanate treatment (P < 0.01). Azithromycin demonstrated significant in vivo activity (P < 0.05) but was significantly less effective than amoxicillin-clavulanate (P < 0.05). Overall, amoxicillin-clavulanate was effective in vitro and in vivo. Clarithromycin and erythromycin were ineffective in vitro and in vivo against H. influenzae, and azithromycin (at concentrations achieved in humans) showed unreliable activity against both pathogens. These results may have clinical implications for the utility of macrolides in the empiric therapy of respiratory tract infections.


2014 ◽  
Vol 82 (5) ◽  
pp. 2048-2058 ◽  
Author(s):  
Stephanie J. Cole ◽  
Angela R. Records ◽  
Mona W. Orr ◽  
Sara B. Linden ◽  
Vincent T. Lee

ABSTRACTPseudomonas aeruginosais an opportunistic human pathogen that is especially adept at forming surface-associated biofilms.P. aeruginosacauses catheter-associated urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling catheters.P. aeruginosaencodes three extracellular polysaccharides, PEL, PSL, and alginate, and utilizes the PEL and PSL polysaccharides to form biofilmsin vitro; however, the requirement of these polysaccharides duringin vivoinfections is not well understood. Here we show in a murine model of CAUTI that PAO1, a strain harboringpel,psl, andalggenes, and PA14, a strain harboringpelandalggenes, form biofilms on the implanted catheters. To determine the requirement of exopolysaccharide duringin vivobiofilm infections, we tested isogenic mutants lacking thepel,psl, andalgoperons and showed that PA14 mutants lacking these operons can successfully form biofilms on catheters in the CAUTI model. To determine the host factor(s) that induces the ΔpelDmutant to form biofilm, we tested mouse, human, and artificial urine and show that urine can induce biofilm formation by the PA14 ΔpelDmutant. By testing the major constituents of urine, we show that urea can induce apel-,psl-, andalg-independent biofilm. Thesepel-,psl-, andalg-independent biofilms are mediated by the release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced the biofilm, indicating that extracellular DNA supports biofilm formation. Our results indicate that the opportunistic pathogenP. aeruginosautilizes a distinct program to form biofilms that are independent of exopolysaccharides during CAUTI.


Sign in / Sign up

Export Citation Format

Share Document