scholarly journals Efficient Ex Vivo Stimulation of Mycobacterium tuberculosis-Specific T Cells by Genetically Detoxified Bordetella pertussis Adenylate Cyclase Antigen Toxoids

2005 ◽  
Vol 73 (5) ◽  
pp. 2991-2998 ◽  
Author(s):  
Katalin A. Wilkinson ◽  
Marcela Simsova ◽  
Elisabeth Schölvinck ◽  
Peter Sebo ◽  
Claude Leclerc ◽  
...  

ABSTRACT Mycobacterium tuberculosis is a significant threat to global health. Mycobacterium bovis BCG vaccine provides only partial protection, and the skin test reagent used to aid diagnosis of both active and latent tuberculosis, purified protein derivative (PPD), lacks specificity and sensitivity. The use of genetically detoxified Bordetella pertussis adenylate cyclase toxin (CyaA) as a delivery system for two immunodominant proteins of M. tuberculosis that are of greater specificity than PPD, early-secreted antigenic target 6-kDa protein (ESAT-6) and culture filtrate protein 10 (CFP-10), was therefore investigated. CyaA toxoids incorporating these antigens were able to restimulate T cells from more than 91% tuberculosis patients and healthy sensitized donors. Delivery of antigen by CyaA decreased by 10-fold the amount of ESAT-6 and CFP-10 required to restimulate T cells, and in low responders, the overall frequency of gamma interferon-producing cells detected by enzyme-linked immunospot assay was increased (P < 0.01 for both antigens). Delivery of ESAT-6 and CFP-10 by CyaA enabled the detection of both CD4+ and CD8+ T cells: these responses could be blocked by inhibition of major histocompatibility complex class II or class I, respectively. Covalent linkage of antigen to the CyaA vector was required for enhancement to occur, as a mixture of mock CyaA toxoid plus recombinant ESAT-6 did not lead to enhancement. In a simplified whole-blood model to detect tuberculosis infection, the frequency of positive responses to CFP-10 was increased by CyaA delivery, a potentially important attribute that could facilitate the identification of latent infection.

2007 ◽  
Vol 14 (7) ◽  
pp. 847-854 ◽  
Author(s):  
Tom G. Connell ◽  
Muki S. Shey ◽  
Ronnett Seldon ◽  
Molebogeng X. Rangaka ◽  
Gilles van Cutsem ◽  
...  

ABSTRACTThe genetically detoxifiedBordetella pertussisadenylate cyclase is a promising delivery system for immunodominant tuberculosis antigens in gamma interferon release assays. This system has not been evaluated in human immunodeficiency virus (HIV)-infected persons in high tuberculosis prevalence areas. A whole-blood gamma interferon release assay withMycobacterium tuberculosisantigens (early-secreted antigenic target 6, culture filtrate protein 10, alpha-crystallin 2, and TB10.3) delivered by adenylate cyclase in addition to native tuberculosis antigens (without adenylate cyclase delivery) was evaluated in 119 adults in Khayelitsha Township, Cape Town, South Africa. Results were compared to tuberculin skin test results of 41 HIV-positive and 42 HIV-negative asymptomatic persons, in addition to 36 HIV-positive persons with recently diagnosed smear- or culture-positive pulmonary tuberculosis. Delivery of tuberculosis antigens by adenylate cyclase decreased by 10-fold the amount of antigen required to restimulate T cells. Furthermore, the responses of HIV-positive persons with a low response to native tuberculosis antigens were enhanced when these antigens were delivered by adenylate cyclase. When gamma interferon responses to the tuberculosis antigens (with or without delivery by adenylate cyclase) were combined, a significantly higher number of patients were scored positive than by tuberculin skin testing. Ex vivo responses to tuberculosis antigens delivered by adenylate cyclase are maintained in the context of HIV infection. Our findings suggest that the majority of those in this population are infected with tuberculosis, which is of significant public health importance.


2014 ◽  
Vol 211 (4) ◽  
pp. 635-640 ◽  
Author(s):  
Ameeta S. Kalokhe ◽  
Toidi Adekambi ◽  
Chris C. Ibegbu ◽  
Susan M. Ray ◽  
Cheryl L. Day ◽  
...  

2012 ◽  
Vol 71 (11) ◽  
pp. 1783-1790 ◽  
Author(s):  
Xavier Mariette ◽  
Gabriel Baron ◽  
Florence Tubach ◽  
Frédéric Lioté ◽  
Bernard Combe ◽  
...  

BackgroundThe recommendations for detecting latent tuberculosis infection (LTBI) before antitumour necrosis factor (anti-TNF) therapy are based on the tuberculin skin test (TST), which lacks both specificity and sensitivity and can lead to unnecessary treatment with antibiotics. A study was undertaken to investigate the effect of replacing TST with interferon γ (IFNγ) release assays (IGRA) in screening for LTBI and deciding to begin prophylactic antituberculosis (TB) antibiotics before anti-TNF therapy in immune-mediated inflammatory diseases.MethodsIn 15 tertiary care hospitals, consecutive patients with rheumatoid arthritis, spondylarthropathies or Crohn's disease were screened for LTBI before anti-TNF therapy with TST, QuantiFERON TB Gold in tube (QTF-Gold IT) and T-SPOT.TB at the same time. The potential diagnosis of LTBI and the effect on the decision to begin antibiotic prophylaxis were assessed.ResultsAmong 429 patients, 392 had results for the three tests. The results for TST, T-SPOT.TB and QTF Gold IT were positive for 35.2%, 15.1% and 9.9% of patients, respectively (p<0.0001). Antibiotics were required for 177 patients (45.2%) if positive TST results were included in the LTBI definition, 107 patients (27.3%) if TST results were replaced with results from one of the IGRA tests and 84 patients (21.4%) if TST results were replaced with QTF-Gold IT results (p<0.0001). The decision on the use of antibiotic prophylaxis was changed for 113 patients (28.8%, 95% CI 24.4% to 33.6%) if TST results were replaced with QTF-Gold IT results.ConclusionsReplacing TST with IGRA for determining LTBI allowed the proportion of patients with immune-mediated inflammatory diseases needing prophylactic anti-TB antibiotics before beginning anti-TNF agents to be reduced by half.TrialRegNo: NCT00811343.


2020 ◽  
Vol 222 (6) ◽  
pp. 995-1007 ◽  
Author(s):  
Sara Suliman ◽  
Anele Gela ◽  
Simon C Mendelsohn ◽  
Sarah K Iwany ◽  
Kattya Lopez Tamara ◽  
...  

Abstract Background In human blood, mucosal-associated invariant T (MAIT) cells are abundant T cells that recognize antigens presented on non-polymorphic major histocompatibility complex-related 1 (MR1) molecules. The MAIT cells are activated by mycobacteria, and prior human studies indicate that blood frequencies of MAIT cells, defined by cell surface markers, decline during tuberculosis (TB) disease, consistent with redistribution to the lungs. Methods We tested whether frequencies of blood MAIT cells were altered in patients with TB disease relative to healthy Mycobacterium tuberculosis-exposed controls from Peru and South Africa. We quantified their frequencies using MR1 tetramers loaded with 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil. Results Unlike findings from prior studies, frequencies of blood MAIT cells were similar among patients with TB disease and latent and uninfected controls. In both cohorts, frequencies of MAIT cells defined by MR1-tetramer staining and coexpression of CD161 and the T-cell receptor alpha variable gene TRAV1-2 were strongly correlated. Disease severity captured by body mass index or TB disease transcriptional signatures did not correlate with MAIT cell frequencies in patients with TB. Conclusions Major histocompatibility complex (MHC)-related 1-restrictied MAIT cells are detected at similar levels with tetramers or surface markers. Unlike MHC-restricted T cells, blood frequencies of MAIT cells are poor correlates of TB disease but may play a role in pathophysiology.


2010 ◽  
Vol 21 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Johannes Nemeth ◽  
Heide-Maria Winkler ◽  
Franz Karlhofer ◽  
Nicole Selenko-Gebauer ◽  
Wolfgang Graninger ◽  
...  

2010 ◽  
Vol 78 (12) ◽  
pp. 5116-5125 ◽  
Author(s):  
Lakshmi Ramachandra ◽  
Yan Qu ◽  
Ying Wang ◽  
Colleen J. Lewis ◽  
Brian A. Cobb ◽  
...  

ABSTRACT Major histocompatibility complex class II (MHC-II) molecules are released by murine macrophages upon lipopolysaccharide (LPS) stimulation and ATP signaling through the P2X7 receptor. These studies show that infection of macrophages with Mycobacterium tuberculosis or M. bovis strain BCG enhances MHC-II release in synergy with ATP. Shed MHC-II was contained in two distinct organelles, exosomes and plasma membrane-derived microvesicles, which were both able to present exogenous antigenic peptide to T hybridoma cells. Furthermore, microvesicles from mycobacterium-infected macrophages were able to directly present M. tuberculosis antigen (Ag) 85B(241-256)-I-Ab complexes that were generated by the processing of M. tuberculosis Ag 85B in infected cells to both M. tuberculosis-specific T hybridoma cells and naïve P25 M. tuberculosis T-cell receptor (TCR)-transgenic T cells. In the presence of prefixed macrophages, exosomes from mycobacterium-infected macrophages provided weak stimulation to M. tuberculosis-specific T hybridoma cells but not naïve P25 T cells. Thus, infection with M. tuberculosis primes macrophages for the increased release of exosomes and microvesicles bearing M. tuberculosis peptide-MHC-II complexes that may generate antimicrobial T-cell responses.


2015 ◽  
Vol 205 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Ilaria Sauzullo ◽  
Fabio Mengoni ◽  
Claudia Mascia ◽  
Raffaella Rossi ◽  
Miriam Lichtner ◽  
...  

2004 ◽  
Vol 72 (11) ◽  
pp. 6255-6261 ◽  
Author(s):  
H. Martin Vordermeier ◽  
Marcela Simsova ◽  
Katalin A. Wilkinson ◽  
Robert J. Wilkinson ◽  
R. Glyn Hewinson ◽  
...  

ABSTRACT The exponential increase in the incidence of tuberculosis in cattle over the last two decades in the British national herd constitutes a significant economic problem. Therefore, research efforts are under way to develop cattle tuberculosis vaccines and specific diagnostic reagents to allow the distinction of vaccinated from infected animals. Mycobacterial antigens like ESAT-6 and CFP10 allow this distinction. This study investigates whether fusion protein of ESAT-6 or CFP10 with genetically detoxified Bordetella pertussis adenylate cyclase (CyaA) are recognized by Mycobacterium bovis-infected cattle more effectively than conventional recombinant proteins are, thus enhancing sensitivity or reducing the amount of antigens required. By measuring the frequencies of gamma interferon (IFN-γ)-producing cells, we were able to show that the presentation of CFP10 as a CyaA fusion protein enhanced the molecular efficiency of its recognition 20-fold, while the recognition of ESAT-6 was not improved by CyaA delivery. Furthermore, in the whole-blood IFN-γ test currently used in the field, the delivery of CFP10 and ESAT-6 by fusion to CyaA increased the amount of IFN-γ produced and hence the proportion of infected animals responding to CFP10. The improved T-cell recognition of CyaA336/CFP10 was found to be dependent upon interaction with CD11b. In addition, presentation of CyaA336/CFP10 to CD4+ T cells was chloroquine sensitive, and CFP10 delivery by CyaA resulted in its accelerated presentation to T cells. In conclusion, the use of CyaA fusion proteins with ESAT-6 and CFP10 has the potential to improve the sensitivity of immunodiagnostic tests detecting bovine tuberculosis in cattle.


Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 1158-1165 ◽  
Author(s):  
Wayne R. Godfrey ◽  
Mark R. Krampf ◽  
Patricia A. Taylor ◽  
Bruce R. Blazar

AbstractEliminating alloreactive cells from T-cell populations would enable the transfer of immune function to patients who receive stem cell transplants. However, high-efficiency depletion has proved difficult to achieve. We sought to develop ex vivo approaches for the maximal depletion of alloreactive CD4+ T cells. Using a flow cytometric cell sorting approach after mixed lymphocyte reaction (MLR) culture, we have found that sorted CFSEbright (5-(and-6)-carboxyfluorescein diacetate succinmidyl ester) (nondivided) and activation antigen-negative cells are markedly depleted of alloreactivity. With HLA-mismatched peripheral blood mononuclear cell (PBMC) stimulators we have consistently attained (90%-95%) depletion of alloreactivity. Importantly, when purified matured monocyte-derived dendritic cells (DCs) are used as stimulators, a 100-fold (99%) reduction in alloreactivity was attained, resulting in abrogation of the secondary MLR. Significantly, the CFSEbright CD25- cells recovered from these cultures retained general immunoreactivity, including responses to Candida and cytomegalovirus (CMV) antigens. In addition, a CFSE-based approach was tested and found to be sufficient for graft-versus-host disease (GVHD) prevention in vivo, in a major histocompatibility complex (MHC) class II disparate murine model. This efficient approach to selectively deplete mature alloantigen-specific T cells may permit enhanced immune reconstitution without GVHD. (Blood. 2004;103:1158-1165)


Sign in / Sign up

Export Citation Format

Share Document