scholarly journals TcpF Is a Soluble Colonization Factor and Protective Antigen Secreted by El Tor and Classical O1 and O139 Vibrio cholerae Serogroups

2005 ◽  
Vol 73 (8) ◽  
pp. 4461-4470 ◽  
Author(s):  
Thomas J. Kirn ◽  
Ronald K. Taylor

ABSTRACT Vibrio cholerae causes diarrhea by colonizing the human small bowel and intoxicating epithelial cells. Colonization is a required step in pathogenesis, and strains defective for colonization are significantly attenuated. The best-characterized V. cholerae colonization factor is the toxin-coregulated pilus (TCP). It has been demonstrated that TCP is required for V. cholerae colonization in both humans and mice. TCP enhances bacterial interactions that allow microcolony formation and thereby promotes survival in the intestine. We have recently discovered that the TCP biogenesis apparatus also serves as a secretion system, mediating the terminal step in the extracellular secretion pathway of TcpF. TcpF was identified in classical isolates of V. cholerae O1 as a soluble factor essential for colonization in the infant mouse cholera model. In the present study, we expanded our analysis of TcpF to include the O1 El Tor and O139 serogroups and investigated how TCP and TcpF act together to mediate colonization. Additionally, we demonstrated that antibodies generated against TcpF are protective against experimental V. cholerae infection in the infant mouse cholera model. This observation, coupled with the fact that TcpF is a potent mediator of colonization, suggests that TcpF should be considered as a component of a polyvalent cholera vaccine formulation.

2003 ◽  
Vol 71 (10) ◽  
pp. 5498-5504 ◽  
Author(s):  
Weili Liang ◽  
Shixia Wang ◽  
Fenggang Yu ◽  
Lijuan Zhang ◽  
Guoming Qi ◽  
...  

ABSTRACT IEM101, a Vibrio cholerae O1 El Tor Ogawa strain naturally deficient in CTXΦ, was previously selected as a live cholera vaccine candidate. To make a better and safer vaccine that can induce protective immunity against both the bacteria and cholera toxin (CT), a new vaccine candidate, IEM108, was constructed by introducing a ctxB gene and an El Tor-derived rstR gene into IEM101. The ctxB gene codes for the protective antigen CTB subunit, and the rstR gene mediates phage immunity. The stable expression of the two genes was managed by a chromosome-plasmid lethal balanced system based on the housekeeping gene thyA. Immunization studies indicate that IEM108 generates good immune responses against both the bacteria and CT. After a single-dose intraintestinal vaccination with 109 CFU of IEM108, both anti-CTB immunoglobulin G and vibriocidal antibodies were detected in the immunized-rabbit sera. However, only vibriocidal antibodies are detected in rabbits immunized with IEM101. In addition, IEM108 but not IEM101 conferred full protection against the challenges of four wild-type toxigenic strains of V. cholerae O1 and 4 μg of CT protein in a rabbit model. By introducing the rstR gene, the frequency of conjugative transfer of a recombinant El Tor-derived RS2 suicidal plasmid to IEM108 was decreased 100-fold compared to that for IEM101. This indicated that the El Tor-derived rstR cloned in IEM108 was fully functional and could effectively inhibit the El Tor-derived CTXΦ from infecting IEM108. Our results demonstrate that IEM108 is an efficient and safe live oral cholera vaccine candidate that induces antibacterial and antitoxic immunity and CTXΦ phage immunity.


2015 ◽  
Vol 83 (7) ◽  
pp. 2862-2869 ◽  
Author(s):  
Mudit Chaand ◽  
Kelly A. Miller ◽  
Madeline K. Sofia ◽  
Cory Schlesener ◽  
Jacob W. A. Weaver ◽  
...  

Vibrio choleraeis a genetically diverse species, and pathogenic strains can encode different virulence factors that mediate colonization and secretory diarrhea. Although the toxin-coregulated pilus (TCP) is the primary colonization factor in epidemic-causingV. choleraestrains, other strains do not encode the TCP and instead promote colonization via the activity of a type 3 secretion system (T3SS). Using the infant mouse model and T3SS-positive O39 serogroup strain AM-19226, we sought to determine which of 12 previously identified, T3SS-translocated proteins (Vops) are important for host colonization. We constructed in-frame deletions in each of the 12 loci in strain AM-19226 and identified five Vop deletion strains, including ΔVopM, which were severely attenuated for colonization. Interestingly, a subset of deletion strains was also incompetent for effector protein transport. Our collective data therefore suggest that several translocated proteins may also function as components of the structural apparatus or translocation machinery and indicate that while VopM is critical for establishing an infection, the combined activities of other effectors may also contribute to the ability of T3SS-positive strains to colonize host epithelial cell surfaces.


2009 ◽  
Vol 191 (11) ◽  
pp. 3665-3676 ◽  
Author(s):  
Shelly J. Krebs ◽  
Thomas J. Kirn ◽  
Ronald K. Taylor

ABSTRACT Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization.


2003 ◽  
Vol 71 (2) ◽  
pp. 1020-1025 ◽  
Author(s):  
Shah M. Faruque ◽  
M. Kamruzzaman ◽  
Ismail M. Meraj ◽  
Nityananda Chowdhury ◽  
G. Balakrish Nair ◽  
...  

ABSTRACT The major virulence factors of toxigenic Vibrio cholerae are cholera toxin (CT), which is encoded by a lysogenic bacteriophage (CTXΦ), and toxin-coregulated pilus (TCP), an essential colonization factor which is also the receptor for CTXΦ. The genes for the biosynthesis of TCP are part of a larger genetic element known as the TCP pathogenicity island. To assess their pathogenic potential, we analyzed environmental strains of V. cholerae carrying genetic variants of the TCP pathogenicity island for colonization of infant mice, susceptibility to CTXΦ, and diarrheagenicity in adult rabbits. Analysis of 14 environmental strains, including 3 strains carrying a new allele of the tcpA gene, 9 strains carrying a new allele of the toxT gene, and 2 strains carrying conventional tcpA and toxT genes, showed that all strains colonized infant mice with various efficiencies in competition with a control El Tor biotype strain of V. cholerae O1. Five of the 14 strains were susceptible to CTXΦ, and these transductants produced CT and caused diarrhea in adult rabbits. These results suggested that the new alleles of the tcpA and toxT genes found in environmental strains of V. cholerae encode biologically active gene products. Detection of functional homologs of the TCP island genes in environmental strains may have implications for understanding the origin and evolution of virulence genes of V. cholerae.


2003 ◽  
Vol 71 (6) ◽  
pp. 2993-2999 ◽  
Author(s):  
Shah M. Faruque ◽  
Jun Zhu ◽  
Asadulghani ◽  
M. Kamruzzaman ◽  
John J. Mekalanos

ABSTRACT The major virulence factors of toxigenic Vibrio cholerae are cholera toxin, which is encoded by a lysogenic filamentous bacteriophage (CTXΦ), and toxin-coregulated pilus (TCP), an essential colonization factor that is also the receptor for CTXΦ. The genes involved in the biosynthesis of TCP reside in a pathogenicity island, which has been reported to correspond to the genome of another filamentous phage (designated VPIΦ) and to encode functions necessary for the production of infectious VPIΦ particles. We examined 46 V. cholerae strains having diverse origins and carrying different genetic variants of the TCP island for the production of the VPIΦ and CTXΦ in different culture conditions, including induction of prophages with mitomycin C and UV irradiation. Although 9 of 10 V. cholerae O139 strains and 12 of 15 toxigenic El Tor strains tested produced extracellular CTXΦ, none of the 46 TCP-positive strains produced detectable VPIΦ in repeated assays, which detected as few as 10 particles of a control CTX phage per ml. These results contradict the previous report regarding VPIΦ-mediated horizontal transfer of the TCP genes and suggest that the TCP island is unable to support the production of phage particles. Further studies are necessary to understand the mechanism of horizontal transfer of the TCP island.


2009 ◽  
Vol 192 (4) ◽  
pp. 955-963 ◽  
Author(s):  
Subhra Pradhan ◽  
Amit K. Baidya ◽  
Amalendu Ghosh ◽  
Kalidas Paul ◽  
Rukhsana Chowdhury

ABSTRACT Vibrio cholerae strains of the O1 serogroup that typically cause epidemic cholera can be classified into two biotypes, classical and El Tor. The El Tor biotype emerged in 1961 and subsequently displaced the classical biotype as a cause of cholera throughout the world. In this study we demonstrate that when strains of the El Tor and classical biotypes were cocultured in standard LB medium, the El Tor strains clearly had a competitive growth advantage over the classical biotype starting from the late stationary phase and could eventually take over the population. The classical biotype produces extracellular protease(s) in the stationary phase, and the amounts of amino acids and small peptides in the late stationary and death phase culture filtrates of the classical biotype were higher than those in the corresponding culture filtrates of the El Tor biotype. The El Tor biotype cells could utilize the amino acids more efficiently than the classical biotype under the alkaline pH of the stationary phase cultures but not in medium buffered to neutral pH. The growth advantage of the El Tor biotype was also observed in vivo using the ligated rabbit ileal loop and infant mouse animal models.


2016 ◽  
Vol 198 (6) ◽  
pp. 973-985 ◽  
Author(s):  
Andrew Rogers ◽  
Loni Townsley ◽  
Ana L. Gallego-Hernandez ◽  
Sinem Beyhan ◽  
Laura Kwuan ◽  
...  

ABSTRACTThe presence of the Lon protease in all three domains of life hints at its biological importance. The prokaryotic Lon protease is responsible not only for degrading abnormal proteins but also for carrying out the proteolytic regulation of specific protein targets. Posttranslational regulation by Lon is known to affect a variety of physiological traits in many bacteria, including biofilm formation, motility, and virulence. Here, we identify the regulatory roles of LonA in the human pathogenVibrio cholerae. We determined that the absence of LonA adversely affects biofilm formation, increases swimming motility, and influences intracellular levels of cyclic diguanylate. Whole-genome expression analysis revealed that the message abundance of genes involved in biofilm formation was decreased but that the message abundances of those involved in virulence and the type VI secretion system were increased in alonAmutant compared to the wild type. We further demonstrated that alonAmutant displays an increase in type VI secretion system activity and is markedly defective in colonization of the infant mouse. These findings suggest that LonA plays a critical role in the environmental survival and virulence ofV. cholerae.IMPORTANCEBacteria utilize intracellular proteases to degrade damaged proteins and adapt to changing environments. The Lon protease has been shown to be important for environmental adaptation and plays a crucial role in regulating the motility, biofilm formation, and virulence of numerous plant and animal pathogens. We find that LonA of the human pathogenV. choleraeis in line with this trend, as the deletion of LonA leads to hypermotility and defects in both biofilm formation and colonization of the infant mouse. In addition, we show that LonA regulates levels of cyclic diguanylate and the type VI secretion system. Our observations add to the known regulatory repertoire of the Lon protease and the current understanding ofV. choleraephysiology.


1999 ◽  
Vol 67 (12) ◽  
pp. 6341-6345 ◽  
Author(s):  
Carol O. Tacket ◽  
Mitchell B. Cohen ◽  
Steven S. Wasserman ◽  
Genevieve Losonsky ◽  
Sofie Livio ◽  
...  

ABSTRACT CVD 103-HgR is a live oral cholera vaccine strain constructed by deleting 94% of the gene for the enzymatically active A subunit of cholera toxin from classical Inaba Vibrio cholerae O1 569B; the strain also contains a mercury resistance gene as an identifying marker. This vaccine was well tolerated and immunogenic in double-blind, controlled studies and was protective in open-label studies of volunteers challenged with V. cholerae O1. A randomized, double-blind, placebo-controlled, multicenter study of vaccine efficacy was designed to test longer-term protection of CVD 103-HgR against moderate and severe El Tor cholera in U.S. volunteers. A total of 85 volunteers (50 at the University of Maryland and 35 at Children's Hospital Medical Center/University of Cincinnati) were recruited for vaccination and challenge with wild-type V. cholerae El Tor Inaba. Volunteers were randomized in a double-blind manner to receive, with buffer, a single oral dose of either CVD 103-HgR (2 × 108to 8 × 108 CFU) or placebo (killed E. coli K-12). About 3 months after immunization, 51 of these volunteers were orally challenged with 105 CFU of virulent V. cholerae O1 El Tor Inaba strain N16961, prepared from a standardized frozen inoculum. Ninety-one percent of the vaccinees had a ≥4-fold rise in serum vibriocidal antibodies after vaccination. After challenge, 9 (39%) of the 23 placebo recipients and 1 (4%) of the 28 vaccinees had moderate or severe diarrhea (≥3-liter diarrheal stool) (P < 0.01; protective efficacy, 91%). A total of 21 (91%) of 23 placebo recipients and 5 (18%) of 28 vaccinees had any diarrhea (P < 0.001; protective efficacy, 80%). Peak stoolV. cholerae excretion among placebo recipients was 1.1 × 107 CFU/g and among vaccinees was 4.9 × 102 CFU/g (P < 0.001). This vaccine could therefore be a safe and effective tool to prevent cholera in travelers.


2009 ◽  
Vol 77 (9) ◽  
pp. 3807-3816 ◽  
Author(s):  
Salvador Almagro-Moreno ◽  
E. Fidelma Boyd

ABSTRACT Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of E scherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.


Sign in / Sign up

Export Citation Format

Share Document