scholarly journals Genetic Mapping of Secretion and Functional Determinants of the Vibrio cholerae TcpF Colonization Factor

2009 ◽  
Vol 191 (11) ◽  
pp. 3665-3676 ◽  
Author(s):  
Shelly J. Krebs ◽  
Thomas J. Kirn ◽  
Ronald K. Taylor

ABSTRACT Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization.

2005 ◽  
Vol 73 (8) ◽  
pp. 4461-4470 ◽  
Author(s):  
Thomas J. Kirn ◽  
Ronald K. Taylor

ABSTRACT Vibrio cholerae causes diarrhea by colonizing the human small bowel and intoxicating epithelial cells. Colonization is a required step in pathogenesis, and strains defective for colonization are significantly attenuated. The best-characterized V. cholerae colonization factor is the toxin-coregulated pilus (TCP). It has been demonstrated that TCP is required for V. cholerae colonization in both humans and mice. TCP enhances bacterial interactions that allow microcolony formation and thereby promotes survival in the intestine. We have recently discovered that the TCP biogenesis apparatus also serves as a secretion system, mediating the terminal step in the extracellular secretion pathway of TcpF. TcpF was identified in classical isolates of V. cholerae O1 as a soluble factor essential for colonization in the infant mouse cholera model. In the present study, we expanded our analysis of TcpF to include the O1 El Tor and O139 serogroups and investigated how TCP and TcpF act together to mediate colonization. Additionally, we demonstrated that antibodies generated against TcpF are protective against experimental V. cholerae infection in the infant mouse cholera model. This observation, coupled with the fact that TcpF is a potent mediator of colonization, suggests that TcpF should be considered as a component of a polyvalent cholera vaccine formulation.


2009 ◽  
Vol 192 (4) ◽  
pp. 955-963 ◽  
Author(s):  
Subhra Pradhan ◽  
Amit K. Baidya ◽  
Amalendu Ghosh ◽  
Kalidas Paul ◽  
Rukhsana Chowdhury

ABSTRACT Vibrio cholerae strains of the O1 serogroup that typically cause epidemic cholera can be classified into two biotypes, classical and El Tor. The El Tor biotype emerged in 1961 and subsequently displaced the classical biotype as a cause of cholera throughout the world. In this study we demonstrate that when strains of the El Tor and classical biotypes were cocultured in standard LB medium, the El Tor strains clearly had a competitive growth advantage over the classical biotype starting from the late stationary phase and could eventually take over the population. The classical biotype produces extracellular protease(s) in the stationary phase, and the amounts of amino acids and small peptides in the late stationary and death phase culture filtrates of the classical biotype were higher than those in the corresponding culture filtrates of the El Tor biotype. The El Tor biotype cells could utilize the amino acids more efficiently than the classical biotype under the alkaline pH of the stationary phase cultures but not in medium buffered to neutral pH. The growth advantage of the El Tor biotype was also observed in vivo using the ligated rabbit ileal loop and infant mouse animal models.


2004 ◽  
Vol 72 (7) ◽  
pp. 4090-4101 ◽  
Author(s):  
Michael D. Meeks ◽  
Rina Saksena ◽  
Xingquan Ma ◽  
Terri K. Wade ◽  
Ronald K. Taylor ◽  
...  

ABSTRACT Development of Vibrio cholerae lipopolysaccharide (LPS) as a cholera vaccine immunogen is justified by the correlation of vibriocidal anti-LPS response with immunity. Two V. cholerae O1 LPS serotypes, Inaba and Ogawa, are associated with endemic and pandemic cholera. Both serotypes induce protective antibody following infection or vaccination. Structurally, the LPSs that define the serotypes are identical except for the terminal perosamine moiety, which has a methoxyl group at position 2 in Ogawa but a hydroxyl group in Inaba. The terminal sugar of the Ogawa LPS is a protective B-cell epitope. We chemically synthesized the terminal hexasaccharides of V. cholerae serotype Ogawa, which comprises in part the O-specific polysaccharide component of the native LPS, and coupled the oligosaccharide at different molar ratios to bovine serum albumin (BSA). Our initial studies with Ogawa immunogens showed that the conjugates induced protective antibody. We hypothesized that antibodies specific for the terminal sugar of Inaba LPS would also be protective. Neoglycoconjugates were prepared from synthetic Inaba oligosaccharides (disaccharide, tetrasaccharide, and hexasaccharide) and BSA at different levels of substitution. BALB/c mice responded to the Inaba carbohydrate (CHO)-BSA conjugates with levels of serum antibodies of comparable magnitude to those of mice immunized with Ogawa CHO-BSA conjugates, but the Inaba-specific antibodies (immunoglobulin M [IgM] and IgG1) were neither vibriocidal nor protective in the infant mouse cholera model. We hypothesize that the anti-Inaba antibodies induced by the Inaba CHO-BSA conjugates have enough affinity to be screened via enzyme-linked immunosorbent assay but not enough to be protective in vivo.


2020 ◽  
Vol 117 (20) ◽  
pp. 11010-11017 ◽  
Author(s):  
A. L. Gallego-Hernandez ◽  
W. H. DePas ◽  
J. H. Park ◽  
J. K. Teschler ◽  
R. Hartmann ◽  
...  

Vibrio cholerae remains a major global health threat, disproportionately impacting parts of the world without adequate infrastructure and sanitation resources. In aquatic environments, V. cholerae exists both as planktonic cells and as biofilms, which are held together by an extracellular matrix. V. cholerae biofilms have been shown to be hyperinfective, but the mechanism of hyperinfectivity is unclear. Here we show that biofilm-grown cells, irrespective of the surfaces on which they are formed, are able to markedly outcompete planktonic-grown cells in the infant mouse. Using an imaging technique designed to render intestinal tissue optically transparent and preserve the spatial integrity of infected intestines, we reveal and compare three-dimensional V. cholerae colonization patterns of planktonic-grown and biofilm-grown cells. Quantitative image analyses show that V. cholerae colonizes mainly the medial portion of the small intestine and that both the abundance and localization patterns of biofilm-grown cells differ from that of planktonic-grown cells. In vitro biofilm-grown cells activate expression of the virulence cascade, including the toxin coregulated pilus (TCP), and are able to acquire the cholera toxin-carrying CTXФ phage. Overall, virulence factor gene expression is also higher in vivo when infected with biofilm-grown cells, and modulation of their regulation is sufficient to cause the biofilm hyperinfectivity phenotype. Together, these results indicate that the altered biogeography of biofilm-grown cells and their enhanced production of virulence factors in the intestine underpin the biofilm hyperinfectivity phenotype.


2006 ◽  
Vol 188 (18) ◽  
pp. 6515-6523 ◽  
Author(s):  
Elizabeth E. Wyckoff ◽  
Alexandra R. Mey ◽  
Andreas Leimbach ◽  
Carolyn F. Fisher ◽  
Shelley M. Payne

ABSTRACT Vibrio cholerae has multiple iron acquisition systems, including TonB-dependent transport of heme and of the catechol siderophore vibriobactin. Strains defective in both of these systems grow well in laboratory media and in the infant mouse intestine, indicating the presence of additional iron acquisition systems. Previously uncharacterized potential iron transport systems, including a homologue of the ferrous transporter Feo and a periplasmic binding protein-dependent ATP binding cassette (ABC) transport system, termed Fbp, were identified in the V. cholerae genome sequence. Clones encoding either the Feo or the Fbp system exhibited characteristics of iron transporters: both repressed the expression of lacZ cloned under the control of a Fur-regulated promoter in Escherichia coli and also conferred growth on a Shigella flexneri mutant that has a severe defect in iron transport. Two other ABC transporters were also evaluated but were negative by these assays. Transport of radioactive iron by the Feo system into the S. flexneri iron transport mutant was stimulated by the reducing agent ascorbate, consistent with Feo functioning as a ferrous transporter. Conversely, ascorbate inhibited transport by the Fbp system, suggesting that it transports ferric iron. The growth of V. cholerae strains carrying mutations in one or more of the potential iron transport genes indicated that both Feo and Fbp contribute to iron acquisition. However, a mutant defective in the vibriobactin, Fbp, and Feo systems was not attenuated in a suckling mouse model, suggesting that at least one other iron transport system can be used in vivo.


2001 ◽  
Vol 69 (3) ◽  
pp. 1947-1952 ◽  
Author(s):  
David K. R. Karaolis ◽  
Ruiting Lan ◽  
James B. Kaper ◽  
Peter R. Reeves

ABSTRACT Epidemic Vibrio cholerae strains possess a large cluster of essential virulence genes on the chromosome called theVibrio pathogenicity island (VPI). The VPI contains thetcp gene cluster encoding the type IV pilus toxin-coregulated pilus colonization factor which can act as the cholera toxin bacteriophage (CTXΦ) receptor. The VPI also contains genes that regulate virulence factor expression. We have fully sequenced and compared the VPI of the seventh-pandemic (El Tor biotype) strain N16961 and the sixth-pandemic (classical biotype) strain 395 and found that the N16961 VPI is 41,272 bp and encodes 29 predicted proteins, whereas the 395 VPI is 41,290 bp. In addition to various nucleotide and amino acid polymorphisms, there were several proteins whose predicted size differed greatly between the strains as a result of frameshift mutations. We hypothesize that these VPI sequence differences provide preliminary evidence to help explain the differences in virulence factor expression between epidemic strains (i.e., the biotypes) of V. cholerae.


2021 ◽  
Author(s):  
Andrew John Van Alst ◽  
Lucas Maurice Demey ◽  
Victor DiRita

Vibrio cholerae respires both aerobically and anaerobically and, while oxygen may be available to it during infection, other terminal electron acceptors are proposed for population expansion during infection. Unlike gastrointestinal pathogens that stimulate significant inflammation leading to elevated levels of oxygen or alternative terminal electron acceptors, V. cholerae infections are not understood to induce a notable inflammatory response. To ascertain the respiration requirements of V. cholerae during infection, we used Multiplex Genome Editing by Natural Transformation (MuGENT) to create V. cholerae strains lacking aerobic or anaerobic respiration. V. cholerae strains lacking aerobic respiration were attenuated in infant mice 10 5 -fold relative to wild type, while strains lacking anaerobic respiration had no colonization defect, contrary to earlier work suggesting a role for anaerobic respiration during infection. Using several approaches, including one we developed for this work termed Comparative Multiplex PCR Amplicon Sequencing (CoMPAS), we determined that the bd-I and cbb3 oxidases are essential for small intestinal colonization of V. cholerae in the infant mouse. The bd-I oxidase was also determined as the primary oxidase during growth outside the host, making V. cholerae the only example of a Gram-negative bacterial pathogen in which a bd-type oxidase is the primary oxidase for energy acquisition inside and outside of a host.


1998 ◽  
Vol 180 (4) ◽  
pp. 773-784 ◽  
Author(s):  
Fitnat H. Yildiz ◽  
Gary K. Schoolnik

ABSTRACT Vibrio cholerae is known to persist in aquatic environments under nutrient-limiting conditions. To analyze the possible involvement of the alternative sigma factor encoded byrpoS, which is shown to be important for survival during nutrient deprivation in several other bacterial species, a V. cholerae rpoS homolog was cloned by functional complementation of an Escherichia coli mutant by using a wild-type genomic library. Sequence analysis of the complementing clone revealed an 1.008-bp open reading frame which is predicted to encode a 336-amino-acid protein with 71 to 63% overall identity to other reported rpoS gene products. To determine the functional role of rpoS in V. cholerae, we inactivatedrpoS by homologous recombination. V. choleraestrains lacking rpoS are impaired in the ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and carbon starvation. These results suggest that rpoS may be required for the persistence of V. cholerae in aquatic habitats. In addition, the rpoSmutation led to reduced production or secretion of hemagglutinin/protease. However, rpoS is not critical for in vivo survival, as determined by an infant mouse intestinal competition assay.


2005 ◽  
Vol 73 (10) ◽  
pp. 6674-6679 ◽  
Author(s):  
Ashfaqul Alam ◽  
Regina C. LaRocque ◽  
Jason B. Harris ◽  
Cecily Vanderspurt ◽  
Edward T. Ryan ◽  
...  

ABSTRACT It has previously been shown that passage of Vibrio cholerae through the human intestine imparts a transient hyperinfectious phenotype that may contribute to the epidemic spread of cholera. The mechanism underlying this human-passaged hyperinfectivity is incompletely understood, in part due to inherent difficulties in recovering and studying organisms that are freshly passed in human stool. Here, we demonstrate that passage of V. cholerae through the infant mouse intestine leads to an equivalent degree of hyperinfectivity as passage through the human host. We have used this infant mouse model of host-passaged hyperinfectivity to characterize the timing and the anatomic location of the competitive advantage of mouse-passaged V. cholerae as well as the contribution of three type IV pili to the phenotype.


1998 ◽  
Vol 180 (3) ◽  
pp. 762-765 ◽  
Author(s):  
S. G. Williams ◽  
O. Carmel-Harel ◽  
P. A. Manning

ABSTRACT Escherichia coli NhaR controls expression of a sodium/proton (Na+/H+) antiporter, NhaA. TheVibrio cholerae NhaR protein shows over 60% identity to those of Escherichia coli and Salmonella enteritidis. V. cholerae NhaR complements an E. coli nhaR mutant for growth in 100 mM LiCl–33 mM NaCl, pH 7.6, and enhances the Na+-dependent induction of an E. colichromosomal nhaA::lacZ fusion. These findings indicate functional homology to E. coli NhaR. TwoV. cholerae nhaR mutants were constructed by using kanamycin resistance cartridge insertion at different sites to disrupt the gene. Both mutants showed sensitivity to growth in 120 mM LiCl, pH 9.2, compared with the wild-type strain and could be complemented by the introduction of V. cholerae nhaR on a low-copy-number plasmid. An nhaR mutation had no detectable effect on the virulence of the V. cholerae strain in the infant mouse model, suggesting that the antiporter system involved is not required in vivo, at least in this animal model.


Sign in / Sign up

Export Citation Format

Share Document