scholarly journals CD8+-T-Cell-Dependent Control of Trypanosoma cruzi Infection in a Highly Susceptible Mouse Strain after Immunization with Recombinant Proteins Based on Amastigote Surface Protein 2

2005 ◽  
Vol 73 (9) ◽  
pp. 6017-6025 ◽  
Author(s):  
Adriano F. S. Araújo ◽  
Bruna C. G. de Alencar ◽  
José Ronnie C. Vasconcelos ◽  
Meire I. Hiyane ◽  
Cláudio R. F. Marinho ◽  
...  

ABSTRACT We previously described that DNA vaccination with the gene encoding amastigote surface protein 2 (ASP-2) protects approximately 65% of highly susceptible A/Sn mice against the lethal Trypanosoma cruzi infection. Here, we explored the possibility that bacterial recombinant proteins of ASP-2 could be used to improve the efficacy of vaccinations. Initially, we compared the protective efficacy of vaccination regimens using either a plasmid DNA, a recombinant protein, or both sequentially (DNA priming and protein boosting). Survival after the challenge was not statistically different among the three mouse groups and ranged from 53.5 to 75%. The fact that immunization with a recombinant protein alone induced protective immunity revealed the possibility that this strategy could be pursued for vaccination. We investigated this possibility by using six different recombinant proteins representing distinct portions of ASP-2. The vaccination of mice with glutathione S-transferase fusion proteins representing amino acids 261 to 500 or 261 to 380 of ASP-2 in the presence of the adjuvants alum and CpG oligodeoxynucleotide 1826 provided remarkable immunity, consistently protecting 100% of the A/Sn mice. Immunity was completely reversed by the in vivo depletion of CD8+ T cells, but not CD4+ T cells, and was associated with the presence of CD8+ T cells specific for an epitope located between amino acids 320 and 327 of ASP-2. We concluded that a relatively simple formulation consisting of a recombinant protein with a selected portion of ASP-2, alum, and CpG oligodeoxynucleotide 1826 might be used to cross-prime strong CD8+-T-cell-dependent protective immunity against T. cruzi infection.

2002 ◽  
Vol 70 (10) ◽  
pp. 5521-5532 ◽  
Author(s):  
Wendy C. Brown ◽  
Travis C. McGuire ◽  
Waithaka Mwangi ◽  
Kimberly A. Kegerreis ◽  
Henriette Macmillan ◽  
...  

ABSTRACT Native major surface protein 1 (MSP1) of Anaplasma marginale, composed of covalently associated MSP1a and MSP1b proteins, stimulates protective immunity in cattle against homologous and heterologous strain challenge. Protective immunity against pathogens in the family Anaplasmataceae involves both CD4+ T cells and neutralizing immunoglobulin G. Thus, an effective vaccine should contain both CD4+ T- and B-lymphocyte epitopes that will elicit strong memory responses upon infection with homologous and heterologous strains. Previous studies demonstrated that the predominant CD4+ T-cell response in MSP1 vaccinates is directed against the MSP1a subunit. The present study was designed to identify conserved CD4+ T-cell epitopes in MSP1a presented by a broadly represented subset of major histocompatibility complex (MHC) class II molecules that would be suitable for inclusion in a recombinant vaccine. Transmembrane protein prediction analysis of MSP1a from the Virginia strain revealed a large hydrophilic domain (HD), extending from amino acids (aa) 1 to 366, and a hydrophobic region extending from aa 367 to 593. The N terminus (aa 1 to 67) includes one 28-aa form A repeat and one 29-aa form B repeat, which each contain an antibody neutralization-sensitive epitope [Q(E)ASTSS]. In MSP1 vaccinates, recombinant MSP1a HD (aa 1 to 366) stimulated recall proliferative responses that were comparable to those against whole MSP1a excluding the repeat region (aa 68 to 593). Peptide mapping determined a minimum of five conserved epitopes in aa 151 to 359 that stimulated CD4+ T cells from cattle expressing DR-DQ haplotypes common in Holstein-Friesian breeds. Peptides representing three epitopes (aa 231 to 266, aa 270 to 279, and aa 290 to 319) were stimulatory for CD4+ T-cell clones and restricted by DR. A DQ-restricted CD4+ T-cell epitope, present in the N-terminal form B repeat (VSSQSDQASTSSQLG), was also mapped using T-cell clones from one vaccinate. Although form B repeat-specific T cells did not recognize the form A repeat peptide (VSSQS_EASTSSQLG), induction of T-cell anergy by this peptide was ruled out. The presence of multiple CD4+ T-cell epitopes in the MSP1a HD, in addition to the neutralization-sensitive epitope, supports the testing of this immunogen for induction of protective immunity against A. marginale challenge.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 865
Author(s):  
Yong Woo Back ◽  
Hyun Shik Bae ◽  
Han-Gyu Choi ◽  
Dang Thi Binh ◽  
Yeo-Jin Son ◽  
...  

In Mycobacterium tuberculosis infection, naïve T cells that encounter mycobacterial antigens through dendritic cells (DCs) induce various CD4+ T-cell responses; therefore, appropriate DC activation is the key for protective immunity against tuberculosis. We previously found that Rv2299c-matured DCs induce Th1 differentiation with bactericidal activity. In this study, to prove that Rv2299c could enhance the protective immunity of other vaccine candidates comprising T-cell-stimulating antigens, Ag85B-ESAT6, a well-known vaccine candidate, was selected as a fusion partner of Rv2299c. Recombinant Rv2299c-Ag85B-ESAT6 protein induced DC maturation and activation. Furthermore, fusion of Rv2299c enhanced the protective efficacy of the Ag85B-ESAT6 vaccine in a mouse model and significantly higher production of TNF-α and IL-2 was detected in the lungs, spleen, and lymph nodes of the group immunized with the Rv2299c-fused protein than with Ag85B-ESAT6. In addition, fusion of Rv2299c enhanced the Ag85B-ESAT6-mediated expansion of multifunctional CD4+ T cells. These data suggested that the DC-activating protein Rv2299c may potentiate the protective immunity of the vaccine candidate comprising T cell antigens.


2001 ◽  
Vol 69 (9) ◽  
pp. 5477-5486 ◽  
Author(s):  
Adriana E. Fujimura ◽  
Sheila S. Kinoshita ◽  
Vera L. Pereira-Chioccola ◽  
Mauricio M. Rodrigues

ABSTRACT Immunization of BALB/c mice with a plasmid containing the gene forTrypanosoma cruzi trans-sialidase (TS) induced antibodies that inhibited TS enzymatic activity, CD4+ Th1 and CD8+ Tc1 cells, and protective immunity against infection. We used this model to obtain basic information on the requirement of CD4 or CD8 or B-cell epitopes for an effective DNA-induced immunity against T. cruzi infection. For that purpose, mice were immunized with plasmids containing DNA sequences encoding (i) the entire TS protein, (ii) the TS enzymatic domain, (iii) the TS CD4+ T-cell epitopes, (iv) the TS CD8+T-cell epitope, or (v) TS CD4+ and CD8+T-cell epitopes. Plasmids expressing the entire TS or its enzymatic domain elicited similar levels of TS-inhibitory antibodies, γ interferon (IFN-γ)-producing T cells, and protective immunity against infection. Although the plasmid expressing TS CD4 epitopes was immunogenic, its protective efficacy against experimental infection was limited. The plasmid expressing the CD8 epitope was poorly immunogenic and provided little protective immunity. The reason for the limited priming of CD8+ T cells was due to a requirement for CD4+ T cells. To circumvent this problem, a plasmid expressing both CD4+ and CD8+ T-cell epitopes was produced. This plasmid generated levels of IFN-γ-producing T cells and protective immunity comparable to that of the plasmid expressing the entire catalytic domain of TS. Our observations suggest that plasmids expressing epitopes recognized by CD4+ and CD8+ T cells may have a better protective potential against infection with T. cruzi.


1997 ◽  
Vol 186 (7) ◽  
pp. 1137-1147 ◽  
Author(s):  
Sanjay Gurunathan ◽  
David L. Sacks ◽  
Daniel R. Brown ◽  
Steven L. Reiner ◽  
Hughes Charest ◽  
...  

To determine whether DNA immunization could elicit protective immunity to Leishmania major in susceptible BALB/c mice, cDNA for the cloned Leishmania antigen LACK was inserted into a euykaryotic expression vector downstream to the cytomegalovirus promoter. Susceptible BALB/c mice were then vaccinated subcutaneously with LACK DNA and challenged with L. major promastigotes. We compared the protective efficacy of LACK DNA vaccination with that of recombinant LACK protein in the presence or absence of recombinant interleukin (rIL)-12 protein. Protection induced by LACK DNA was similar to that achieved by LACK protein and rIL-12, but superior to LACK protein without rIL-12. The immunity conferred by LACK DNA was durable insofar as mice challenged 5 wk after vaccination were still protected, and the infection was controlled for at least 20 wk after challenge. In addition, the ability of mice to control infection at sites distant to the site of vaccination suggests that systemic protection was achieved by LACK DNA vaccination. The control of disease progression and parasitic burden in mice vaccinated with LACK DNA was associated with enhancement of antigen-specific interferon-γ (IFN-γ) production. Moreover, both the enhancement of IFN-γ production and the protective immune response induced by LACK DNA vaccination was IL-12 dependent. Unexpectedly, depletion of CD8+ T cells at the time of vaccination or infection also abolished the protective response induced by LACK DNA vaccination, suggesting a role for CD8+ T cells in DNA vaccine induced protection to L. major. Thus, DNA immunization may offer an attractive alternative vaccination strategy against intracellular pathogens, as compared with conventional vaccination with antigens combined with adjuvants.


2016 ◽  
Vol 84 (9) ◽  
pp. 2627-2638 ◽  
Author(s):  
Charles S. Rosenberg ◽  
Weibo Zhang ◽  
Juan M. Bustamante ◽  
Rick L. Tarleton

Trypanosoma cruziinfection drives the expansion of remarkably focused CD8+T cell responses targeting epitopes encoded by varianttrans-sialidase (TS) genes. Infection of C57BL/6 mice withT. cruziresults in up to 40% of all CD8+T cells committed to recognition of the dominant TSKB20 and subdominant TSKB18 TS epitopes. However, despite this enormous response, these mice fail to clearT. cruziinfection and subsequently develop chronic disease. One possible reason for the failure to cureT. cruziinfection is that immunodomination by these TS-specific T cells may interfere with alternative CD8+T cell responses more capable of complete parasite elimination. To address this possibility, we created transgenic mice that are centrally tolerant to these immunodominant epitopes. Mice expressing TSKB20, TSKB18, or both epitopes controlledT. cruziinfection and developed effector CD8+T cells that maintained an activated phenotype. Memory CD8+T cells from drug-cured TSKB-transgenic mice rapidly responded to secondaryT. cruziinfection. In the absence of the response to TSKB20 and TSKB18, immunodominance did not shift to other known subdominant epitopes despite the capacity of these mice to expand epitope-specific T cells specific for the model antigen ovalbumin expressed by engineered parasites. Thus, CD8+T cell responses tightly and robustly focused on a few epitopes within variant TS antigens appear to neither contribute to, nor detract from, the ability to controlT. cruziinfection. These data also indicate that the relative position of an epitope within a CD8+immunodominance hierarchy does not predict its importance in pathogen control.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2018 ◽  
Vol 9 ◽  
Author(s):  
Cintia L. Araujo Furlan ◽  
Jimena Tosello Boari ◽  
Constanza Rodriguez ◽  
Fernando P. Canale ◽  
Facundo Fiocca Vernengo ◽  
...  

2009 ◽  
Vol 77 (12) ◽  
pp. 5501-5508 ◽  
Author(s):  
Christina Berchtold ◽  
Klaus Panthel ◽  
Stefan Jellbauer ◽  
Brigitte Köhn ◽  
Elisabeth Roider ◽  
...  

ABSTRACT Preexisting antivector immunity can severely compromise the ability of Salmonella enterica serovar Typhimurium live vaccines to induce protective CD8 T-cell frequencies after type III secretion system-mediated heterologous protein translocation in orally immunized mice. To circumvent this problem, we injected CpG DNA admixed to the immunodominant p60217-225 peptide from Listeria monocytogenes subcutaneously into BALB/c mice and coadministered a p60-translocating Salmonella strain by the orogastric route. The distribution of tetramer-positive p60217-225-specific effector and memory CD8 T cells was analyzed by costaining of lymphocytes with CD62L and CD127. In contrast to the single oral application of recombinant Salmonella or single immunization with CpG and p60, in the spleens from mice immunized with a combination of both vaccine types a significantly higher level of p60-specific CD8 T cells with a predominance of the effector memory T-cell subset was detected. In vivo protection studies revealed that this CD8 T-cell population conferred sterile protective immunity against a lethal infection with L. monocytogenes. However, p60-specific central memory CD8 T cells induced by single vaccination with CpG and p60 were not able confer effective protection against rapidly replicating intracellular Listeria. In conclusion, we provide compelling evidence that the combination of Salmonella type III-mediated antigen delivery and CpG immunization is an attractive novel vaccination strategy to modulate CD8 differentiation patterns toward distinct antigen-specific T-cell subsets with favorable protective capacities.


2017 ◽  
Vol 24 (11) ◽  
Author(s):  
Ahreum Kim ◽  
Yun-Gyoung Hur ◽  
Sunwha Gu ◽  
Sang-Nae Cho

ABSTRACT The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis-infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses (P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses (P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4+ T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens (P < 0.01) and CD4+ multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 (P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo, may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients.


2021 ◽  
Author(s):  
Antonella Scaglione ◽  
Silvana Opp ◽  
Alicia Hurtado ◽  
Christine Pampeno ◽  
Ziyan Lin ◽  
...  

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world population at record speeds. However, there is still demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (OX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T cell response in mice. Protein binding, immunohistochemical and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles and metabolic analysis indicate a reprogramming of T cells in vaccinated mice. Activated T cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response that can be used as a new candidate to combat SARS-CoV-2. Given the strong T cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as, serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.


Sign in / Sign up

Export Citation Format

Share Document