scholarly journals DNA Sequences Encoding CD4+ and CD8+T-Cell Epitopes Are Important for Efficient Protective Immunity Induced by DNA Vaccination with a Trypanosoma cruziGene

2001 ◽  
Vol 69 (9) ◽  
pp. 5477-5486 ◽  
Author(s):  
Adriana E. Fujimura ◽  
Sheila S. Kinoshita ◽  
Vera L. Pereira-Chioccola ◽  
Mauricio M. Rodrigues

ABSTRACT Immunization of BALB/c mice with a plasmid containing the gene forTrypanosoma cruzi trans-sialidase (TS) induced antibodies that inhibited TS enzymatic activity, CD4+ Th1 and CD8+ Tc1 cells, and protective immunity against infection. We used this model to obtain basic information on the requirement of CD4 or CD8 or B-cell epitopes for an effective DNA-induced immunity against T. cruzi infection. For that purpose, mice were immunized with plasmids containing DNA sequences encoding (i) the entire TS protein, (ii) the TS enzymatic domain, (iii) the TS CD4+ T-cell epitopes, (iv) the TS CD8+T-cell epitope, or (v) TS CD4+ and CD8+T-cell epitopes. Plasmids expressing the entire TS or its enzymatic domain elicited similar levels of TS-inhibitory antibodies, γ interferon (IFN-γ)-producing T cells, and protective immunity against infection. Although the plasmid expressing TS CD4 epitopes was immunogenic, its protective efficacy against experimental infection was limited. The plasmid expressing the CD8 epitope was poorly immunogenic and provided little protective immunity. The reason for the limited priming of CD8+ T cells was due to a requirement for CD4+ T cells. To circumvent this problem, a plasmid expressing both CD4+ and CD8+ T-cell epitopes was produced. This plasmid generated levels of IFN-γ-producing T cells and protective immunity comparable to that of the plasmid expressing the entire catalytic domain of TS. Our observations suggest that plasmids expressing epitopes recognized by CD4+ and CD8+ T cells may have a better protective potential against infection with T. cruzi.

2017 ◽  
Vol 24 (11) ◽  
Author(s):  
Ahreum Kim ◽  
Yun-Gyoung Hur ◽  
Sunwha Gu ◽  
Sang-Nae Cho

ABSTRACT The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis-infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses (P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses (P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4+ T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens (P < 0.01) and CD4+ multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 (P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo, may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5490-5490
Author(s):  
Brad E. Hoffman ◽  
Roland W. Herzog

Abstract A significant complication associated with treatment of inherited protein deficiencies, such as hemophilia B, by gene replacement therapy is the potential for the activation of transgene specific B and T cells to the therapeutic protein, coagulation factor IX (F.IX). In addition to the potential for inhibitor formation as a result of MHC class II antigen presentation (CD4+ T cell-dependent activation of B cells, which may also be observed in conventional protein-based therapy), gene expression may lead to MHC class I presentation of F.IX-derived peptides to CD8+ T cells. Upon in vivo gene transfer, such immune responses to may elicit a cytotoxic T lymphocyte (CTL) response capable of destroying target cells that express the F.IX transgene product. Therefore, to better understand the role of F.IX-specific CD8+ T-cell responses, it is essential that MHC I-restricted CD8 T-cell epitopes be identified. Here, we used a peptide library consisting of 82 individual 15-mer peptides overlapping by ten residues that spans the complete human F.IX (hF.IX) protein to preliminarily identify a specific immunodominate CD8+ T-cell epitope. The peptides were pooled into groups, each containing 8–11 peptides to create a matrix of 18 pools, with each peptide represented in two pools. C3H/HeJ were immunized with 5×1010 vector genomes of E1/E3-deleted adenovirus expressing hF.IX (Ad-hF.IX) via intramuscular injection into the quadriceps. Nine days later, the harvested spleen and popliteal lymph node cells were pooled and evaluated for CD8+ T-cell responses by intracellular cytokine staining for IFN-γ after being stimulated for 5h with peptides or controls. The frequency of IFN-γ producing hF.IX-specific CD8+ T-cells was determined by flow cytometry. While 16 pools from Ad-hF.IX immunized C3H/HeJ mice showed no response above the frequency of mock-stimulated cells, lymphocytes from two overlapping pools demonstrated a ~2.5-fold increase in frequency of CD8+ IFN-γ+ cells. From these results we can conclude that peptide 74 (SGGPHVTEVEGTSFL) contains a CD8+ T cell epitope for C3H/HeJ mice (H-2k haplotype). Furthermore, splenocytes from naive mice failed to respond to any of the peptide pools. The amino acid sequence corresponding to peptide 74 is located within the catalytic domain of hF.IX. This finding is of particular interest, in that, we previously reported a peptide containing the immunodominate CD4+ T-cell epitope in C3H/HeJ is also located within the catalytic domain of hF.IX (Blood 108:408). The definitive identification of hF.IX-specific CD8+ epitopes will facilitate the evaluation of experimental gene therapy strategies in murine models by providing a reagent for in vitro stimulation of F.IX specific CD8+ lymphocytes. For example, we can now determine the efficiency of CD8+ T cell activation as a function of vector, route, and dose following in vivo gene transfer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Patricia de León ◽  
Rodrigo Cañas-Arranz ◽  
Sira Defaus ◽  
Elisa Torres ◽  
Mar Forner ◽  
...  

Dendrimeric peptide constructs based on a lysine core that comprises both B- and T-cell epitopes of foot-and-mouth disease virus (FMDV) have proven a successful strategy for the development of FMD vaccines. Specifically, B2T dendrimers displaying two copies of the major type O FMDV antigenic B-cell epitope located on the virus capsid [VP1 (140–158)], covalently linked to a heterotypic T-cell epitope from either non-structural protein 3A [3A (21–35)] or 3D [3D (56–70)], named B2T-3A and B2T-3D, respectively, elicit high levels of neutralizing antibodies (nAbs) and IFN-γ-producing cells in pigs. To assess whether the inclusion and orientation of T-3A and T-3D T-cell epitopes in a single molecule could modulate immunogenicity, dendrimers with T epitopes juxtaposed in both possible orientations, i.e., constructs B2TT-3A3D and B2TT-3D3A, were made and tested in pigs. Both dendrimers elicited high nAbs titers that broadly neutralized type O FMDVs, although B2TT-3D3A did not respond to boosting, and induced lower IgGs titers, in particular IgG2, than B2TT-3A3D. Pigs immunized with B2, a control dendrimer displaying two B-cell epitope copies and no T-cell epitope, gave no nABs, confirming T-3A and T-3D as T helper epitopes. The T-3D peptide was found to be an immunodominant, as it produced more IFN-γ expressing cells than T-3A in the in vitro recall assay. Besides, in pigs immunized with the different dendrimeric peptides, CD4+ T-cells were the major subset contributing to IFN-γ expression upon in vitro recall, and depletion of CD4+ cells from PBMCs abolished the production of this cytokine. Most CD4+IFN-γ+ cells showed a memory (CD4+2E3−) and a multifunctional phenotype, as they expressed both IFN-γ and TNF-α, suggesting that the peptides induced a potent Th1 pro-inflammatory response. Furthermore, not only the presence, but also the orientation of T-cell epitopes influenced the T-cell response, as B2TT-3D3A and B2 groups had fewer cells expressing both cytokines. These results help understand how B2T-type dendrimers triggers T-cell populations, highlighting their potential as next-generation FMD vaccines.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sudeep Kumar Maurya ◽  
Mohammad Aqdas ◽  
Deepjyoti Kumar Das ◽  
Sanpreet Singh ◽  
Sajid Nadeem ◽  
...  

Abstract Background Approximately 80% - 90% of individuals infected with latent Mycobacterium tuberculosis (Mtb) remain protected throughout their life-span. The release of unique, latent-phase antigens are known to have a protective role in the immune response against Mtb. Although the BCG vaccine has been administered for nine decades to provide immunity against Mtb, the number of TB cases continues to rise, thereby raising doubts on BCG vaccine efficacy. The shortcomings of BCG have been associated with inadequate processing and presentation of its antigens, an inability to optimally activate T cells against Mtb, and generation of regulatory T cells. Furthermore, BCG vaccination lacks the ability to eliminate latent Mtb infection. With these facts in mind, we selected six immunodominant CD4 and CD8 T cell epitopes of Mtb expressed during latent, acute, and chronic stages of infection and engineered a multi-epitope-based DNA vaccine (C6). Result BALB/c mice vaccinated with the C6 construct along with a BCG vaccine exhibited an expansion of both CD4 and CD8 T cell memory populations and augmented IFN-γ and TNF-α cytokine release. Furthermore, enhancement of dendritic cell and macrophage activation was noted. Consequently, illustrating the elicitation of immunity that helps in the protection against Mtb infection; which was evident by a significant reduction in the Mtb burden in the lungs and spleen of C6 + BCG administered animals. Conclusion Overall, the results suggest that a C6 + BCG vaccination approach may serve as an effective vaccination strategy in future attempts to control TB.


1997 ◽  
Vol 186 (7) ◽  
pp. 1137-1147 ◽  
Author(s):  
Sanjay Gurunathan ◽  
David L. Sacks ◽  
Daniel R. Brown ◽  
Steven L. Reiner ◽  
Hughes Charest ◽  
...  

To determine whether DNA immunization could elicit protective immunity to Leishmania major in susceptible BALB/c mice, cDNA for the cloned Leishmania antigen LACK was inserted into a euykaryotic expression vector downstream to the cytomegalovirus promoter. Susceptible BALB/c mice were then vaccinated subcutaneously with LACK DNA and challenged with L. major promastigotes. We compared the protective efficacy of LACK DNA vaccination with that of recombinant LACK protein in the presence or absence of recombinant interleukin (rIL)-12 protein. Protection induced by LACK DNA was similar to that achieved by LACK protein and rIL-12, but superior to LACK protein without rIL-12. The immunity conferred by LACK DNA was durable insofar as mice challenged 5 wk after vaccination were still protected, and the infection was controlled for at least 20 wk after challenge. In addition, the ability of mice to control infection at sites distant to the site of vaccination suggests that systemic protection was achieved by LACK DNA vaccination. The control of disease progression and parasitic burden in mice vaccinated with LACK DNA was associated with enhancement of antigen-specific interferon-γ (IFN-γ) production. Moreover, both the enhancement of IFN-γ production and the protective immune response induced by LACK DNA vaccination was IL-12 dependent. Unexpectedly, depletion of CD8+ T cells at the time of vaccination or infection also abolished the protective response induced by LACK DNA vaccination, suggesting a role for CD8+ T cells in DNA vaccine induced protection to L. major. Thus, DNA immunization may offer an attractive alternative vaccination strategy against intracellular pathogens, as compared with conventional vaccination with antigens combined with adjuvants.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2004 ◽  
Vol 78 (11) ◽  
pp. 5612-5618 ◽  
Author(s):  
Yue-Dan Wang ◽  
Wan-Yee Fion Sin ◽  
Guo-Bing Xu ◽  
Huang-Hua Yang ◽  
Tin-yau Wong ◽  
...  

ABSTRACT The immunogenicity of HLA-A2-restricted T-cell epitopes in the S protein of the Severe acute respiratory syndrome coronavirus (SARS-CoV) and of human coronavirus strain 229e (HCoV-229e) was analyzed for the elicitation of a T-cell immune response in donors who had fully recovered from SARS-CoV infection. We employed online database analysis to compare the differences in the amino acid sequences of the homologous T epitopes of HCoV-229e and SARS-CoV. The identified T-cell epitope peptides were synthesized, and their binding affinities for HLA-A2 were validated and compared in the T2 cell system. The immunogenicity of all these peptides was assessed by using T cells obtained from donors who had fully recovered from SARS-CoV infection and from healthy donors with no history of SARS-CoV infection. HLA-A2 typing by indirect immunofluorescent antibody staining showed that 51.6% of SARS-CoV-infected patients were HLA-A2 positive. Online database analysis and the T2 cell binding test disclosed that the number of HLA-A2-restricted immunogenic epitopes of the S protein of SARS-CoV was decreased or even lost in comparison with the homologous sequences of the S protein of HCoV-229e. Among the peptides used in the study, the affinity of peptides from HCoV-229e (H77 and H881) and peptides from SARS-CoV (S978 and S1203) for binding to HLA-A2 was higher than that of other sequences. The gamma interferon (IFN-γ) release Elispot assay revealed that only SARS-CoV-specific peptides S1203 and S978 induced a high frequency of IFN-γ-secreting T-cell response in HLA-A2+ donors who had fully recovered from SARS-CoV infection; such a T-cell epitope-specific response was not observed in HLA-A2+ healthy donors or in HLA-A2− donors who had been infected with SARS-CoV after full recovery. Thus, T-cell epitopes S1203 and S978 are immunogenic and elicit an overt specific T-cell response in HLA-A2+ SARS-CoV-infected patients.


2006 ◽  
Vol 81 (4) ◽  
pp. 1821-1837 ◽  
Author(s):  
William Dowling ◽  
Elizabeth Thompson ◽  
Catherine Badger ◽  
Jenny L. Mellquist ◽  
Aura R. Garrison ◽  
...  

ABSTRACT The Ebola virus (EBOV) envelope glycoprotein (GP) is the primary target of protective immunity. Mature GP consists of two disulfide-linked subunits, GP1 and membrane-bound GP2. GP is highly glycosylated with both N- and O-linked carbohydrates. We measured the influences of GP glycosylation on antigenicity, immunogenicity, and protection by testing DNA vaccines comprised of GP genes with deleted N-linked glycosylation sites or with deletions in the central hypervariable mucin region. We showed that mutation of one of the two N-linked GP2 glycosylation sites was highly detrimental to the antigenicity and immunogenicity of GP. Our data indicate that this is likely due to the inability of GP2 and GP1 to dimerize at the cell surface and suggest that glycosylation at this site is required for achieving the conformational integrity of GP2 and GP1. In contrast, mutation of two N-linked sites on GP1, which flank previously defined protective antibody epitopes on GP, may enhance immunogenicity, possibly by unmasking epitopes. We further showed that although deleting the mucin region apparently had no effect on antigenicity in vitro, it negatively impacted the elicitation of protective immunity in mice. In addition, we confirmed the presence of previously identified B-cell and T-cell epitopes in GP but show that when analyzed individually none of them were neither absolutely required nor sufficient for protective immunity to EBOV. Finally, we identified other potential regions of GP that may contain relevant antibody or T-cell epitopes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3188-3188
Author(s):  
Denise E. Sabatino ◽  
Federico Mingozzi ◽  
Haifeng Chen ◽  
Peter Colosi ◽  
Hildegund C.J. Ertl ◽  
...  

Abstract Recently, a clinical trial for adeno-associated virus serotype 2 (AAV2) mediated liver directed gene transfer of human Factor IX to subjects with severe hemophilia B revealed that two patients developed transient asymptomatic transaminitis following vector administration. Immunology studies in the second patient demonstrated a transient T cell response to AAV2 capsid peptides suggesting that the immune response to the AAV capsid may be related to the transient transaminitis. We hypothesized that the observations made in the human subjects were due to a CD8 T cell response to AAV2 capsid protein. Preclinical studies in mice and dogs, which are not naturally infected by wild type AAV2 viruses, did not predict these findings in the clinical study. Thus, we developed a mouse model in which we were able to mimic this phenomenon (Blood 102:493a). In an effort to further characterize the immune responses to AAV2 capsid proteins in this mouse model, we identified the T cell epitope in the AAV capsid protein recognized by murine C57Bl/6 CD8 T cells. A peptide library of AAV2 VP1 capsid peptides (n=145) that were synthesized as 15mers overlapping by 10 amino acids were divided into 6 pools each containing 24–25 peptides. C57Bl/6 mice were immunized intramuscularly with an adenovirus expressing AAV2 capsid protein. Nine days later the spleen was harvested and intracellular cytokine staining (ICS) was used to assess release of IFN-γ from CD8 T cells in response to 6 AAV2 capsid peptide pools. ICS demonstrated CD8 cells from mice immunized with Ad-AAV2 produced IFN-γ (3.5% of the CD8 cells) in response to Pool F (amino acid 119–145) while no IFN-γ release in CD8 cells was detected with Pool A to E (mean 0.28%±0.25%) compared to the media control (0.16%). This detection of IFN-γ release from CD8 T cells indicates a specific proliferation to a peptide(s) within this peptide pool (Pool F). A matrix approach was used to further define which peptide(s) contained the immunodominant epitope. Eleven small peptide pools of Pool F were created in which each peptide was represented in 2 pools. ICS of splenocytes from immunized (Ad-AAV2 capsid) C57Bl/6 mice demonstrated IFN-γ response from CD8 cells to 3 of the matrix pools corresponding to peptide 140 (PEIQYTSNYNKSVNV) and 141 (TSNYNKSVNVDFTVD) compared with media controls. To determine the exact peptide sequence that binds to the MHC Class I molecule, 9 amino acid peptides (n=7) were created that overlap peptide 140 and 141. Peptide SNYNKSVNV showed positive staining for both CD8 and IFN- γ(3.2%) compared with the six other peptides (0.14%±0.08%), media control (0.08%) and mice that were not immunized (0.11%). This epitope lies in the C terminus of the AAV2 VP1 capsid protein. Current studies using strains of mice with different MHC H2 haplotypes will allow us to determine which of the C57Bl/6 MHC alleles the epitope binds. These findings will provide us with a powerful tool for assessing immune responses to AAV capsid in the context of gene therapy. Specifically, they will allow us to determine how long immunologically detectable capsid sequences persist in an animal injected with AAV vectors. This in turn will provide a basis for a clinical study in which subjects are transiently immunosuppressed, from the time of vector injection until capsid epitopes are no longer detectable by the immune system.


2008 ◽  
Vol 76 (8) ◽  
pp. 3628-3631 ◽  
Author(s):  
Sumana Chakravarty ◽  
G. Christian Baldeviano ◽  
Michael G. Overstreet ◽  
Fidel Zavala

ABSTRACT The protective immune response against liver stages of the malaria parasite critically requires CD8+ T cells. Although the nature of the effector mechanism utilized by these cells to repress parasite development remains unclear, a critical role for gamma interferon (IFN-γ) has been widely assumed based on circumstantial evidence. However, the requirement for CD8+ T-cell-mediated IFN-γ production in protective immunity to this pathogen has not been directly tested. In this report, we use an adoptive transfer strategy with circumsporozoite (CS) protein-specific transgenic T cells to examine the role of CD8+ T-cell-derived IFN-γ production in Plasmodium yoelii-infected mice. We show that despite a marginal reduction in the expansion of naive IFN-γ-deficient CS-specific transgenic T cells, their antiparasite activity remains intact. Further, adoptively transferred IFN-γ-deficient CD8+ T cells were as efficient as their wild-type counterparts in limiting parasite growth in naive mice. Taken together, these studies demonstrate that IFN-γ secretion by CS-specific CD8+ T cells is not essential to protect mice against live sporozoite challenge.


Sign in / Sign up

Export Citation Format

Share Document