scholarly journals Identification of three new GGDEF and EAL domain-containing proteins participating in the Scr surface colonization regulatory network in Vibrio parahaemolyticus

2020 ◽  
Author(s):  
John H. Kimbrough ◽  
Linda L. McCarter

Vibrio parahaemolyticus rapidly colonizes surfaces using swarming motility. Surface contact induces the surface sensing regulon including lateral flagellar genes, spurring dramatic shifts in physiology and behavior. The bacterium can also adopt a sessile, surface-associated lifestyle and form robust biofilms. These alternate colonization strategies are influenced reciprocally by the second messenger c-di-GMP. Although V. parahaemolyticus possesses 43 predicted proteins with the c-di-GMP-forming GGDEF domain, none have been previously been identified as contributors to surface colonization. We sought to explore this knowledge gap by using a suppressor transposon screen to restore swarming motility of a non-swarming, high c-di-GMP strain. Two diguanylate cyclases, ScrJ and ScrL, each containing tetratricopeptide repeat coupled GGDEF domains were demonstrated to contribute additively to swarming gene repression. Both proteins required an intact catalytic motif to regulate. Another suppressor mapped in lafV, the last gene in a lateral flagellar operon. Containing a degenerate phosphodiesterase (EAL) domain, LafV affected expression of multiple genes in the surface sensing regulon and required LafK, a primary swarming activator, to repress. Mutation of the signature EAL motif had little effect on LafV’s repressive activity, suggesting LafV belongs to the subclass of EAL-type proteins that are regulatory but not enzymatic. Consistent with these activities and their predicted effects on c-di-GMP, scrJ and scrL, but not lafV mutants affected transcription of the c-di-GMP-responsive, biofilm reporter cpsA::lacZ. Our results expand the knowledge of the V. parahaemolyticus GGDEF/EAL repertoire and their roles in this surface colonization regulatory network. Significance A key survival decision, in the environment or the host, is whether to emigrate or aggregate. In bacteria, c-di-GMP signaling almost universally influences solutions to this dilemma. In V. parahaemolyticus, c-di-GMP reciprocally regulates swarming and sticking (i.e., biofilm formation) programs of surface colonization. Key c-di-GMP degrading phosphodiesterases responsive to quorum and nutritional signals have been previously identified. c-di-GMP-binding transcription factors programming biofilm development have been studied. Here, we further develop the blueprint of the c-di-GMP network by identifying new participants involved in dictating the complex decision of whether to swarm or stay. These include diguanylate cyclases with tetratricopeptide domains and a degenerate EAL protein that serves, analogous to the negative flagellar regulator RflP/YdiV of enteric bacteria, to regulate swarming.

2020 ◽  
Vol 202 (6) ◽  
Author(s):  
John H. Kimbrough ◽  
J. Thomas Cribbs ◽  
Linda L. McCarter

ABSTRACT The marine bacterium and human pathogen Vibrio parahaemolyticus rapidly colonizes surfaces by using swarming motility and forming robust biofilms. Entering one of the two colonization programs, swarming motility or sessility, involves differential regulation of many genes, resulting in a dramatic shift in physiology and behavior. V. parahaemolyticus has evolved complex regulation to control these two processes that have opposing outcomes. One mechanism relies on the balance of the second messenger c-di-GMP, where high c-di-GMP favors biofilm formation. V. parahaemolyticus possesses four homologous regulators, the Scr transcription factors, that belong in a Vibrio-specific family of W[F/L/M][T/S]R motif transcriptional regulators, some members of which have been demonstrated to bind c-di-GMP. In this work, we explore the role of these Scr regulators in biofilm development. We show that each protein binds c-di-GMP, that this binding requires a critical R in the binding motif, and that the biofilm-relevant activities of CpsQ, CpsS, and ScrO but not ScrP are dependent upon second messenger binding. ScrO and CpsQ are the primary drivers of biofilm formation, as biofilms are eliminated when both of these regulators are absent. ScrO is most important for capsule expression. CpsQ is most important for RTX-matrix protein expression, although it contributes to capsule expression when c-di-GMP levels are high. Both regulators contribute to O-antigen ligase expression. ScrP works oppositely in a minor role to repress the ligase gene. CpsS plays a regulatory checkpointing role by negatively modulating expression of these biofilm-pertinent genes under fluctuating c-di-GMP conditions. Our work further elucidates the multifactorial network that contributes to biofilm development in V. parahaemolyticus. IMPORTANCE Vibrio parahaemolyticus can inhabit open ocean, chitinous shells, and the human gut. Such varied habitats and the transitions between them require adaptable regulatory networks controlling energetically expensive behaviors, including swarming motility and biofilm formation, which are promoted by low and high concentrations of the signaling molecule c-di-GMP, respectively. Here, we describe four homologous c-di-GMP-binding Scr transcription factors in V. parahaemolyticus. Members of this family of regulators are present in many vibrios, yet their numbers and the natures of their activities differ across species. Our work highlights the distinctive roles that these transcription factors play in dynamically controlling biofilm formation and architecture in V. parahaemolyticus and serves as a powerful example of regulatory network evolution and diversification.


2020 ◽  
Vol 235 ◽  
pp. 126448 ◽  
Author(s):  
Yibei Zhang ◽  
Huanhuan Liu ◽  
Dan Gu ◽  
Xingxu Lu ◽  
Xiaohui Zhou ◽  
...  

2005 ◽  
Vol 73 (9) ◽  
pp. 5754-5761 ◽  
Author(s):  
Kwon-Sam Park ◽  
Michiko Arita ◽  
Tetsuya Iida ◽  
Takeshi Honda

ABSTRACT A histone-like nucleoid structure (H-NS) is a major component of the bacterial nucleoid and plays a crucial role in the global gene regulation of enteric bacteria. Here, we cloned and characterized the gene for the H-NS-like protein VpaH in Vibrio parahaemolyticus. vpaH encodes a protein of 134 amino acids that shows approximately 55%, 54%, and 41% identities with VicH in Vibrio cholerae, H-NS in V. parahaemolyticus, and H-NS in Escherichia coli, respectively. The vpaH gene was found in only trh-positive V. parahaemolyticus strains and not in Kanagawa-positive or in trh-negative environmental strains. Moreover, the G+C content of the vpaH gene was 38.6%, which is lower than the average G+C content of the whole genome of this bacterium (45.4%). These data suggest that vpaH was transmitted to trh-possessing V. parahaemolyticus strains by lateral transfer. The vpaH gene was located about 2.6 kb downstream of the trh gene, in the convergent direction of the trh transcription. An in-frame deletion mutant of vpaH lacked motility on semisolid motility assay plates. Western blot analysis and electron microscopy observations revealed that the mutant was deficient in lateral flagella biogenesis, whereas there was no defect in the expression of polar flagella. Additionally, the vpaH mutant showed a decreased adherence to HeLa cells and a decrease in biofilm formation compared with the wild-type strain. Introduction of the vpaH gene in the vpaH-negative strain increased the expression of lateral flagella compared with the wild-type strain. In conclusion, our findings suggest that VpaH affects lateral flagellum biogenesis in trh-positive V. parahaemolyticus strain TH3996.


2010 ◽  
Vol 79 (1) ◽  
pp. 240-263 ◽  
Author(s):  
Cindy J. Gode-Potratz ◽  
Ryan J. Kustusch ◽  
Patrick J. Breheny ◽  
David S. Weiss ◽  
Linda L. McCarter

2004 ◽  
Vol 55 (4) ◽  
pp. 1160-1182 ◽  
Author(s):  
Jodi L. Enos-Berlage ◽  
Zehra T. Guvener ◽  
Carrie E. Keenan ◽  
Linda L. McCarter

2019 ◽  
Vol 14 (12) ◽  
pp. 1043-1053 ◽  
Author(s):  
Renfei Lu ◽  
Hao Tang ◽  
Yue Qiu ◽  
Wenhui Yang ◽  
Huiying Yang ◽  
...  

Aim: Investigation of the lateral flagellar (Laf) genes transcription by the quorum sensing (QS) regulators AphA and OpaR in Vibrio parahaemolyticus. Materials & methods: Regulation mechanisms were assessed by combined utilization of swarming motility assay, qPCR, LacZ fusion, EMSA and DNase I footprinting. Results: AphA and OpaR oppositely regulate swarming motility and Laf genes. At high cell density, OpaR bound to the regulatory regions of motY-lafK-fliEFGHIJ, fliMNPQR-flhBA, fliDSTKLA-motAB and lafA to repress their transcription. At low cell density, AphA indirectly activated their transcription. Conclusion: OpaR repression of swarming motility was via its direct repression of Laf genes, while AphA exerted its regulatory effect on swarming motility through unknown regulator(s).


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Zaira Heredia-Ponce ◽  
Jose Antonio Gutiérrez-Barranquero ◽  
Gabriela Purtschert-Montenegro ◽  
Leo Eberl ◽  
Francisco M. Cazorla ◽  
...  

Abstract Pseudomonas syringae is a phytopathogenic model bacterium that is used worldwide to study plant–bacteria interactions and biofilm formation in association with a plant host. Within this species, the syringae pathovar is the most studied due to its wide host range, affecting both, woody and herbaceous plants. In particular, Pseudomonas syringae pv. syringae (Pss) has been previously described as the causal agent of bacterial apical necrosis on mango trees. Pss exhibits major epiphytic traits and virulence factors that improve its epiphytic survival and pathogenicity in mango trees. The cellulose exopolysaccharide has been described as a key component in the development of the biofilm lifestyle of the P. syringae pv. syringae UMAF0158 strain (PssUMAF0158). PssUMAF0158 contains two additional genomic regions that putatively encode for exopolysaccharides such as alginate and a Psl-like polysaccharide. To date, the Psl polysaccharide has only been studied in Pseudomonas aeruginosa, in which it plays an important role during biofilm development. However, its function in plant-associated bacteria is still unknown. To understand how these exopolysaccharides contribute to the biofilm matrix of PssUMAF0158, knockout mutants of genes encoding these putative exopolysaccharides were constructed. Flow-cell chamber experiments revealed that cellulose and the Psl-like polysaccharide constitute a basic scaffold for biofilm architecture in this bacterium. Curiously, the Psl-like polysaccharide of PssUMAF0158 plays a role in virulence similar to what has been described for cellulose. Finally, the impaired swarming motility of the Psl-like exopolysaccharide mutant suggests that this exopolysaccharide may play a role in the motility of PssUMAF0158 over the mango plant surface.


2012 ◽  
Vol 81 (2) ◽  
pp. 496-504 ◽  
Author(s):  
David E. Payne ◽  
Nicholas R. Martin ◽  
Katherine R. Parzych ◽  
Alex H. Rickard ◽  
Adam Underwood ◽  
...  

ABSTRACTStaphylococcus aureusis a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influenceS. aureusbiofilm development, we screened a library of small molecules for the ability to inhibitS. aureusbiofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibitsS. aureusbiofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibitsS. aureusbiofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of anisaAmutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistantS. aureusnasal colonization. We found that black tea inhibitedS. aureusbiofilm development and that anisaAmutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model forS. aureusthroat colonization and found that tea consumption reducedS. aureusthroat colonization via anisaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influenceS. aureussurface colonization.


Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 1867-1873 ◽  
Author(s):  
Dor Salomon ◽  
John A. Klimko ◽  
Kim Orth

The marine bacterium Vibrio parahaemolyticus, a major cause of food-borne gastroenteritis, employs a type VI secretion system 1 (T6SS1), a recently discovered protein secretion system, to combat competing bacteria. Environmental signals such as temperature, salinity, cell density and surface sensing, as well as the quorum-sensing master regulator OpaR, were previously reported to regulate T6SS1 activity and expression. In this work, we set out to identify additional transcription regulators that control the tightly regulated T6SS1 activity. To this end, we determined the effect of deletions in several known virulence regulators and in two regulators encoded within the T6SS1 gene cluster on expression and secretion of the core T6SS component Hcp1 and on T6SS1-mediated anti-bacterial activity. We report that VP1391 and VP1407, transcriptional regulators encoded within the T6SS1 gene cluster, are essential for T6SS1 activity. Moreover, we found that H-NS, a bacterial histone-like nucleoid structuring protein, which mediates transcription silencing of horizontally acquired genes, serves as a repressor of T6SS1. We also show that activation of surface sensing and high salt conditions alleviate the H-NS-mediated repression. Our results shed light on the complex network of environmental signals and transcription regulators that govern the tight regulation over T6SS1 activity.


Sign in / Sign up

Export Citation Format

Share Document