scholarly journals The Caulobacter Tol-Pal Complex Is Essential for Outer Membrane Integrity and the Positioning of a Polar Localization Factor

2010 ◽  
Vol 192 (19) ◽  
pp. 4847-4858 ◽  
Author(s):  
Yi-Chun Yeh ◽  
Luis R. Comolli ◽  
Kenneth H. Downing ◽  
Lucy Shapiro ◽  
Harley H. McAdams

ABSTRACTCell division inCaulobacter crescentusinvolves constriction and fission of the inner membrane (IM) followed about 20 min later by fission of the outer membrane (OM) and daughter cell separation. In contrast toEscherichia coli, theCaulobacterTol-Pal complex is essential. Cryo-electron microscopy images of theCaulobactercell envelope exhibited outer membrane disruption, and cells failed to complete cell division in TolA, TolB, or Pal mutant strains. In wild-type cells, components of the Tol-Pal complex localize to the division plane in early predivisional cells and remain predominantly at the new pole of swarmer and stalked progeny upon completion of division. The Tol-Pal complex is required to maintain the position of the transmembrane TipN polar marker, and indirectly the PleC histidine kinase, at the cell pole, but it is not required for the polar maintenance of other transmembrane and membrane-associated polar proteins tested. Coimmunoprecipitation experiments show that both TolA and Pal interact directly or indirectly with TipN. We propose that disruption of thetrans-envelope Tol-Pal complex releases TipN from its subcellular position. TheCaulobacterTol-Pal complex is thus a key component of cell envelope structure and function, mediating OM constriction at the final step of cell division as well as the positioning of a protein localization factor.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jack Alfred Bryant ◽  
Faye C Morris ◽  
Timothy J Knowles ◽  
Riyaz Maderbocus ◽  
Eva Heinz ◽  
...  

The Gram-negative outer membrane envelops the bacterium and functions as a permeability barrier against antibiotics, detergents and environmental stresses. Some virulence factors serve to maintain the integrity of the outer membrane, including DolP (formerly YraP) a protein of unresolved structure and function. Here we reveal DolP is a lipoprotein functionally conserved among Gram-negative bacteria and that loss of DolP increases membrane fluidity. We present the NMR solution structure for Escherichia coli DolP, which is composed of two BON domains that form an interconnected opposing pair. The C-terminal BON domain binds anionic phospholipids through an extensive membrane:protein interface. This interaction is essential for DolP function and is required for sub-cellular localization of the protein to the cell division site, providing evidence of subcellular localization of these phospholipids within the outer membrane. The structure of DolP provides a new target for developing therapies that disrupt the integrity of the bacterial cell envelope.


2019 ◽  
Vol 201 (8) ◽  
Author(s):  
Leonor García-Bayona ◽  
Kevin Gozzi ◽  
Michael T. Laub

ABSTRACTThe Cdz bacteriocin system allows the aquatic oligotrophic bacteriumCaulobacter crescentusto kill closely related species in a contact-dependent manner. The toxin, which aggregates on the surfaces of producer cells, is composed of two small hydrophobic proteins, CdzC and CdzD, each bearing an extended glycine-zipper motif, that together induce inner membrane depolarization and kill target cells. To further characterize the mechanism of Cdz delivery and toxicity, we screened for mutations that render a target strain resistant to Cdz-mediated killing. These mutations mapped to four loci, including a TonB-dependent receptor, a three-gene operon (namedzerRABforzipperenveloperesistance), andperA(forpentapeptideenveloperesistance). Mutations in thezerRABlocus led to its overproduction and to potential changes in cell envelope composition, which may diminish the susceptibility of cells to Cdz toxins. TheperAgene is also required to maintain a normal cell envelope, but our screen identified mutations that confer resistance to Cdz toxins without substantially affecting the cell envelope functions of PerA. We demonstrate that PerA, which encodes a pentapeptide repeat protein predicted to form a quadrilateral β-helix, localizes primarily to the outer membrane of cells, where it may serve as a receptor for the Cdz toxins. Collectively, these results provide new insights into the function and mechanisms of an atypical, contact-dependent bacteriocin system.IMPORTANCEBacteriocins are commonly used by bacteria to kill neighboring cells that compete for resources. Although most bacteriocins are secreted, the aquatic, oligotrophic bacteriumCaulobacter crescentusproduces a two-peptide bacteriocin, CdzC/D, that remains attached to the outer membranes of cells, enabling contact-dependent killing of cells lacking the immunity protein CdzI. The receptor for CdzC/D has not previously been reported. Here, we describe a genetic screen for mutations that confer resistance to CdzC/D. One locus identified,perA, encodes a pentapeptide repeat protein that resides in the outer membrane of target cells, where it may act as the direct receptor for CdzC/D. Collectively, our results provide new insight into bacteriocin function and diversity.


2009 ◽  
Vol 191 (17) ◽  
pp. 5398-5408 ◽  
Author(s):  
Aleksandra E. Sikora ◽  
Sinem Beyhan ◽  
Michael Bagdasarian ◽  
Fitnat H. Yildiz ◽  
Maria Sandkvist

ABSTRACT The Vibrio cholerae type II secretion (T2S) machinery is a multiprotein complex that spans the cell envelope. When the T2S system is inactivated, cholera toxin and other exoproteins accumulate in the periplasmic compartment. Additionally, loss of secretion via the T2S system leads to a reduced growth rate, compromised outer membrane integrity, and induction of the extracytoplasmic stress factor RpoE (A. E. Sikora, S. R. Lybarger, and M. Sandkvist, J. Bacteriol. 189:8484-8495, 2007). In this study, gene expression profiling reveals that inactivation of the T2S system alters the expression of genes encoding cell envelope components and proteins involved in central metabolism, chemotaxis, motility, oxidative stress, and iron storage and acquisition. Consistent with the gene expression data, molecular and biochemical analyses indicate that the T2S mutants suffer from internal oxidative stress and increased levels of intracellular ferrous iron. By using a tolA mutant of V. cholerae that shares a similar compromised membrane phenotype but maintains a functional T2S machinery, we show that the formation of radical oxygen species, induction of oxidative stress, and changes in iron physiology are likely general responses to cell envelope damage and are not unique to T2S mutants. Finally, we demonstrate that disruption of the V. cholerae cell envelope by chemical treatment with polymyxin B similarly results in induction of the RpoE-mediated stress response, increased sensitivity to oxidants, and a change in iron metabolism. We propose that many types of extracytoplasmic stresses, caused either by genetic alterations of outer membrane constituents or by chemical or physical damage to the cell envelope, induce common signaling pathways that ultimately lead to internal oxidative stress and misregulation of iron homeostasis.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Hervé Nicoloff ◽  
Saumya Gopalkrishnan ◽  
Sarah E. Ades

ABSTRACT The alternative sigma factor σE is a key component of the Escherichia coli response to cell envelope stress and is required for viability even in the absence of stress. The activity of σE increases during entry into stationary phase, suggesting an important role for σE when nutrients are limiting. Elevated σE activity has been proposed to activate a pathway leading to the lysis of nonculturable cells that accumulate during early stationary phase. To better understand σE-directed cell lysis and the role of σE in stationary phase, we investigated the effects of elevated σE activity in cultures grown for 10 days. We demonstrate that high σE activity is lethal for all cells in stationary phase, not only those that are nonculturable. Spontaneous mutants with reduced σE activity, due primarily to point mutations in the region of σE that binds the −35 promoter motif, arise and take over cultures within 5 to 6 days after entry into stationary phase. High σE activity leads to large reductions in the levels of outer membrane porins and increased membrane permeability, indicating membrane defects. These defects can be counteracted and stationary-phase lethality delayed significantly by stabilizing membranes with Mg2+ and buffering the growth medium or by deleting the σE-dependent small RNAs (sRNAs) MicA, RybB, and MicL, which inhibit the expression of porins and Lpp. Expression of these sRNAs also reverses the loss of viability following depletion of σE activity. Our results demonstrate that appropriate regulation of σE activity, ensuring that it is neither too high nor too low, is critical for envelope integrity and cell viability. IMPORTANCE The Gram-negative cell envelope and cytoplasm differ significantly, and separate responses have evolved to combat stress in each compartment. An array of cell envelope stress responses exist, each of which is focused on different parts of the envelope. The σE response is conserved in many enterobacteria and is tuned to monitor pathways for the maturation and delivery of outer membrane porins, lipoproteins, and lipopolysaccharide to the outer membrane. The activity of σE is tightly regulated to match the production of σE regulon members to the needs of the cell. In E. coli, loss of σE results in lethality. Here we demonstrate that excessive σE activity is also lethal and results in decreased membrane integrity, the very phenotype the system is designed to prevent.


1998 ◽  
Vol 180 (24) ◽  
pp. 6433-6439 ◽  
Author(s):  
Pierre Germon ◽  
Thierry Clavel ◽  
Anne Vianney ◽  
Raymond Portalier ◽  
Jean Claude Lazzaroni

ABSTRACT The Tol-Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. They form two complexes in the cell envelope. Transmembrane domains of TolQ, TolR, and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. The N-terminal transmembrane domain of TolA anchors the protein to the cytoplasmic membrane and interacts with TolQ and TolR. Extensive mutagenesis of the N-terminal part of TolA was carried out to characterize the residues involved in such processes. Mutations affecting the function of TolA resulted in a lack or an alteration in TolA-TolQ or TolR-TolA interactions but did not affect the formation of TolQ-TolR complexes. Our results confirmed the importance of residues serine 18 and histidine 22, which are part of an SHLS motif highly conserved in the TolA and the related TonB proteins from different organisms. Genetic suppression experiments were performed to restore the functional activity of some tolA mutants. The suppressor mutations all affected the first transmembrane helix of TolQ. These results confirmed the essential role of the transmembrane domain of TolA in triggering interactions with TolQ and TolR.


2019 ◽  
Author(s):  
Simon-Ulysse Vallet ◽  
Lykke Haastrup Hansen ◽  
Freja Cecillie Bistrup ◽  
Julien Bortoli Chapalay ◽  
Marc Chambon ◽  
...  

AbstractRod-shaped bacteria frequently localise proteins to one or both cell poles in order to regulate processes such as chromosome replication or polar organelle development. However, the role of such polar factors in responses to extracellular stimuli has been generally unexplored. We employed chemical-genetic screening to probe the interaction between one such factor from Caulobacter crescentus, TipN, and extracellular stress and found that TipN is required for normal tolerance of cell envelope-directed antibiotics, including vancomycin that does not normally inhibit growth of Gram-negative bacteria. Forward genetic screening for suppressors of vancomycin sensitivity in the absence of TipN revealed the TonB-dependent receptor ChvT as the mediator of vancomycin tolerance. Loss of ChvT improved resistance to vancomycin and cefixime in the otherwise sensitive ΔtipN strain. The activity of the two-component system regulating ChvT (ChvIG) was increased in ΔtipN cells relative to wild type under some, but not all, cell wall stress conditions that this strain was sensitised to, in particular cefixime and detergent exposure. Together, these results indicate that the ChvIG two-component system has been co-opted as a sensor of cell wall stress and that TipN can influence cell envelope stability and ChvIG-mediated signaling in addition to its roles in intracellular development.Author summaryMaintenance of an intact cell envelope is essential for free-living bacteria to survive harsh conditions they may encounter in their environment. In the case of rod-shaped bacteria, the poles of the cell are potential weak points in the cell envelope due to the high curvature of the layers and the need to break and re-form parts of the cell envelope at the division plane in order to form new poles as the cells replicate and divide. We have found that TipN, a factor required for correct division and cell pole development in the rod-shaped bacterium, Caulobacter crescentus, is also needed for maintaining normal levels of resistance to cell wall-targeting antibiotics such as vancomycin and cefixime, which interfere with peptidoglycan synthesis. We also identified an outer membrane receptor, ChvT, that was responsible for allowing vancomycin access to the cells and found that the two-component system that negatively regulates ChvT production was activated by various kinds of cell wall stress. Presence or absence of TipN influenced how active this system was in the presence of cefixime or of the membrane-disrupting detergent sodium deoxycholate. Since TipN is normally located at the poles of the cell and at the division plane just before cells complete division, our results suggest that it is involved in stabilisation of these weak points of the cell envelope as well as its other roles inside the cell.


1999 ◽  
Vol 181 (20) ◽  
pp. 6306-6311 ◽  
Author(s):  
Emmanuelle Bouveret ◽  
Hélène Bénédetti ◽  
Alain Rigal ◽  
Erwann Loret ◽  
Claude Lazdunski

ABSTRACT The Tol-peptidoglycan-associated lipoprotein (PAL) system ofEscherichia coli is a multiprotein complex of the envelope involved in maintaining outer membrane integrity. PAL and the periplasmic protein TolB, two components of this complex, are interacting with each other, and they have also been reported to interact with OmpA and the major lipoprotein, two proteins interacting with the peptidoglycan. All these interactions suggest a role of the Tol-PAL system in anchoring the outer membrane to the peptidoglycan. Therefore, we were interested in better understanding the interaction between PAL and the peptidoglycan. We designed an in vitro interaction assay based on the property of purified peptidoglycan to be pelleted by ultracentrifugation. Using this assay, we showed that a purified PAL protein interacted in vitro with pure peptidoglycan. A peptide competition experiment further demonstrated that the region from residues 89 to 130 of PAL was sufficient to bind the peptidoglycan. Moreover, the fact that this same region of PAL was also binding to TolB suggested that these two interactions were exclusive. Indeed, the TolB-PAL complex appeared not to be associated with the peptidoglycan. This led us to the conclusion that PAL may exist in two forms in the cell envelope, one bound to TolB and the other bound to the peptidoglycan.


2021 ◽  
Author(s):  
Eric Mandela ◽  
Christopher J. Stubenrauch ◽  
David Ryoo ◽  
Hyea Hwang ◽  
Eli J. Cohen ◽  
...  

ABSTRACTThe cell envelope of Gram-negative bacteria consists of two membranes surrounding a periplasm and peptidoglycan layer. Molecular machines spanning the cell envelope dictate protein and lipid transport and drug resistance phenotypes, and depend on spatial constraints across the envelope and load-bearing forces across the cell surface. The mechanisms dictating spatial constraints across the cell envelope remain incompletely defined. In Escherichia coli, the coiled-coil lipoprotein Lpp contributes the only covalent linkage between the outer membrane and the underlying peptidoglycan layer. Using proteomics, molecular dynamics and a synthetic lethal screen we show that lengthening Lpp to the upper limit does not change periplasmic width and spatial constraint, but rather impacts the load-bearing capacity across the outer membrane. E. coli expressing elongated Lpp activate potent homeostatic mechanisms to enforce a wild-type spatial constraint: they increase steady-state levels of factors determining cell stiffness, decrease membrane integrity, increase membrane vesiculation and depend on otherwise non-essential tethers to maintain lipid transport and peptidoglycan biosynthesis. Our findings demonstrate complex regulatory mechanisms for tight control over periplasmic width to enable spatial constraint essential for membrane spanning processes. They further show that the periplasm cannot be widened by engineering approaches, with implications for understanding how spatial constraint across the envelope controls processes such as flagellum-driven motility, cellular signaling and protein translocation.


2021 ◽  
Author(s):  
Nowrosh Islam ◽  
Misha I. Kazi ◽  
Katie N. Kang ◽  
Jacob Biboy ◽  
Joe Gray ◽  
...  

The Gram-negative cell envelope is an essential structure that not only protects the cell against lysis from the internal turgor, but also forms a barrier to limit entry of antibiotics. Some of our most potent bactericidal antibiotics, the β-lactams, exploit the essentiality of the cell envelope by inhibiting its biosynthesis, typically inducing lysis and rapid death. However, many Gram-negative bacteria exhibit antibiotic tolerance, the ability to sustain viability in the presence of β-lactams for extended time periods. Despite several studies showing that antibiotic tolerance contributes directly to treatment failure, and is a steppingstone in acquisition of true resistance, the molecular factors that promote intrinsic tolerance are not well-understood. Acinetobacter baumannii is a critical-threat nosocomial pathogen notorious for its ability to rapidly develop multidrug resistance. While typically reserved to combat multidrug resistant infections, carbapenem β-lactam antibiotics (i.e., meropenem) are first-line prescriptions to treat A. baumannii infections. Meropenem tolerance in Gram-negative pathogens is characterized by morphologically distinct populations of spheroplasts, but the impact of spheroplast formation is not fully understood. Here, we show that susceptible A. baumannii clinical isolates demonstrate high intrinsic tolerance to meropenem, form spheroplasts with the antibiotic and revert to normal growth after antibiotic removal. Using transcriptomics and genetics screens, we characterized novel tolerance factors and found that outer membrane integrity maintenance, drug efflux and peptidoglycan homeostasis collectively contribute to meropenem tolerance in A. baumannii. Furthermore, outer membrane integrity and peptidoglycan recycling are tightly linked in their contribution to meropenem tolerance in A. baumannii.


Author(s):  
Nicolas Coudray ◽  
Georgia L. Isom ◽  
Mark R. MacRae ◽  
Mariyah N. Saiduddin ◽  
Gira Bhabha ◽  
...  

In double-membraned bacteria, phospholipids must be transported across the cell envelope to maintain the outer membrane barrier, which plays a key role in antibiotic resistance and pathogen virulence. The Mla system has been implicated in phospholipid trafficking and outer membrane integrity, and includes an ABC transporter complex, MlaFEDB. The transmembrane subunit, MlaE, has minimal sequence similarity to other ABC transporters, and the structure of the entire inner membrane MlaFEDB complex remains unknown. Here we report the cryo-EM structure of the MlaFEDB complex at 3.05 Å resolution. Our structure reveals that while MlaE has many distinct features, it is distantly related to the LPS and MacAB transporters, as well as the eukaryotic ABCA/ABCG families. MlaE adopts an outward-open conformation, resulting in a continuous pathway for phospholipid transport from the MlaE substrate-binding site to the pore formed by the ring of MlaD. Unexpectedly, two phospholipids are bound in the substrate-binding pocket of MlaFEDB, raising the possibility that multiple lipid substrates may be translocated each transport cycle. Site-specific crosslinking confirms that lipids bind in this pocket in vivo. Our structure provides mechanistic insight into substrate recognition and transport by the MlaFEDB complex.


Sign in / Sign up

Export Citation Format

Share Document