scholarly journals Genome Sequence of a Nephritogenic and Highly Transformable M49 Strain of Streptococcus pyogenes

2008 ◽  
Vol 190 (23) ◽  
pp. 7773-7785 ◽  
Author(s):  
W. Michael McShan ◽  
Joseph J. Ferretti ◽  
Tadahiro Karasawa ◽  
Alexander N. Suvorov ◽  
Shaoping Lin ◽  
...  

ABSTRACT The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.

2010 ◽  
Vol 59 (2) ◽  
pp. 220-223 ◽  
Author(s):  
Pallaval V. Bramhachari ◽  
Santosh Y. Kaul ◽  
David J. McMillan ◽  
Melkote S. Shaila ◽  
Mohan G. Karmarkar ◽  
...  

Streptococcus pyogenes [group A streptococcus (GAS)], a human pathogen, and Streptococcus dysgalactiae subsp. equisimilis [human group G and C streptococcus (GGS/GCS)] are evolutionarily related, share the same tissue niche in humans, exchange genetic material, share up to half of their virulence-associated genes and cause a similar spectrum of diseases. Yet, GGS/GCS is often considered as a commensal bacterium and its role in streptococcal disease burden is under-recognized. While reports of the recovery of GGS/GCS from normally sterile sites are increasing, studies describing GGS/GCS throat colonization rates relative to GAS in the same population are very few. This study was carried out in India where the burden of streptococcal diseases, including rheumatic fever and rheumatic heart disease, is high. As part of a surveillance study, throat swabs were taken from 1504 children attending 7 municipal schools in Mumbai, India, during 2006–2008. GAS and GGS/GCS were identified on the basis of β-haemolytic activity, carbohydrate group and PYR test, and were subsequently typed. The GGS/GCS carriage rate (166/1504, 11 %) was eightfold higher than the GAS carriage (22/1504, 1.5 %) rate in this population. The 166 GGS/GCS isolates collected represented 21 different emm types (molecular types), and the 22 GAS isolates represented 15 different emm types. Although the rate of pharyngitis associated with GGS/GCS is marginally lower than with GAS, high rates of throat colonization by GGS/GCS underscore its importance in the pathogenesis of pharyngitis.


2020 ◽  
pp. 64-70
Author(s):  
Anastasiya Laknitskaya

Currently, one of the priority medical and social problems is the optimization of treatment methods for pyoderma associated with Streptococcus pyogenes — group A streptococcus (GAS). To date, the proportion of pyoderma, the etiological factor of which is Streptococcus pyogenes, is about 6 % of all skin diseases and is in the range from 17.9 to 43.9 % of all dermatoses. Role of the bacterial factor in the development of streptococcal pyoderma is obvious. Traditional treatment complex includes antibacterial drugs selected individually, taking into account the antibiotic sensitivity of pathognomonic bacteria, and it is not always effective. Currently implemented immunocorrection methods often do not take into account specific immunological features of the disease, the individual, and the fact that the skin performs the function of not only a mechanical barrier, but it is also an immunocompetent organ. Such an approach makes it necessary to conduct additional studies clarifying the role of factors of innate and adaptive immunity, intercellular mediators and antioxidant defense system, that allow to optimize the treatment of this pathology.


2021 ◽  
pp. 109352662110072
Author(s):  
Oana Neagu ◽  
Amparo Fernández Rodríguez ◽  
Domitille Callon ◽  
Laurent Andréoletti ◽  
Marta C Cohen

Background Acute myocarditis is an inflammatory disease of the heart mostly diagnosed in young people, which can present as sudden death. The etiology includes infectious agents (mostly viruses), systemic diseases and toxins. We aim to characterize infants and children with myocarditis at post-mortem presenting as sudden deaths. Methods Retrospective evaluation of 813 post-mortems in infants and children dying suddenly and unexpectedly between 2009–2019. Data retrieved included histological features, microbiology and clinical history. Results 23 of 813 post-mortems reviewed corresponded to acute myocarditis and 1 to dilated cardiomyopathy related to remote Parvovirus infection. PCR identified enterovirus (7), parvovirus (7 cases, 2 also with HHV6 and 1 case with EVB), Influenza A (1), Parainfluenza type 3 (1). Two cases corresponded to hypersensitivity myocarditis, 1 was Group A Streptococcus and 5 idiopathic myocarditis. Enterovirus was frequent in infants (7/10), and in newborns was associated with meningoencephalitis or congenital myocarditis. More than 50% were less than 2 years of age and all remained clinically unsuspected. Conclusion Myocarditis represents almost 3% of all sudden pediatric deaths. Enterovirus and parvovirus were the most common viruses. This retrospective analysis showed that patients experienced viral symptoms but remained unsuspected, highlighting the need for more clinical awareness of myocarditis.


2005 ◽  
Vol 49 (7) ◽  
pp. 2990-2993 ◽  
Author(s):  
Maria Haller ◽  
Kirsten Fluegge ◽  
Sandra Jasminder Arri ◽  
Brit Adams ◽  
Reinhard Berner

ABSTRACT A total of 301 German pediatric group A streptococcus isolates were screened for the presence of macrolide resistance and the fibronectin binding protein F1 gene (prtF1) encoding an adhesin and cell invasiveness protein. The prtF1 gene was present significantly more often among macrolide-resistant isolates. The majority of these were not clonally related.


2016 ◽  
Vol 94 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Eleonora A. Starikova ◽  
Alexey V. Sokolov ◽  
Anna Yu. Vlasenko ◽  
Larisa A. Burova ◽  
Irina S. Freidlin ◽  
...  

Streptococcus pyogenes (group A Streptococcus; GAS) is an important gram-positive extracellular bacterial pathogen responsible for a number of suppurative infections. This micro-organism has developed complex virulence mechanisms to avoid the host’s defenses. We have previously reported that SDSC from GAS type M22 causes endothelial-cell dysfunction, and inhibits cell adhesion, migration, metabolism, and proliferation in a dose-dependent manner, without affecting cell viability. This work aimed to isolate and characterize a component from GAS type M22 supernatant that suppresses the proliferation of endothelial cells (EA.hy926). In the process of isolating a protein possessing antiproliferative activity we identified arginine deiminase (AD). Further study showed that this enzyme is most active at pH 6.8. Calculating Km and Vmax gave the values of 0.67 mmol·L–1 and 42 s−1, respectively. A distinctive feature of AD purified from GAS type M22 is that its optimum activity and the maximal rate of the catalytic process is close to neutral pH by comparison with enzymes from other micro-organisms. AD from GAS type M22 suppressed the proliferative activity of endothelial cells in a dose-dependent mode. At the same time, in the presence of AD, the proportion of cells in G0/G1 phase increased. When l-Arg was added at increasing concentrations to the culture medium containing AD (3 μg·mL–1), the enzyme’s capacity to inhibit cell proliferation became partially depressed. The proportion of cells in phases S/G2 increased concomitantly, although the cells did not fully recover their proliferation activity. This suggests that AD from GAS type M22 has potential for the suppression of excessive cell proliferation.


2020 ◽  
Vol 21 (2) ◽  
pp. 193-201
Author(s):  
Victoria A. Ploplis ◽  
Francis J. Castellino

A hallmark feature of severe Group A Streptococcus pyogenes (GAS) infection is dysregulated hemostasis. Hemostasis is the primary pathway for regulating blood flow through events that contribute towards clot formation and its dissolution. However, a number of studies have identified components of hemostasis in regulating survival and dissemination of GAS. Several proteins have been identified on the surface of GAS and they serve to either facilitate invasion to host distal sites or regulate inflammatory responses to the pathogen. GAS M-protein, a surface-exposed virulence factor, appears to be a major target for interactions with host hemostasis proteins. These interactions mediate biochemical events both on the surface of GAS and in the solution when M-protein is released into the surrounding environment through shedding or regulated proteolytic processes that dictate the fate of this pathogen. A thorough understanding of the mechanisms associated with these interactions could lead to novel approaches for altering the course of GAS pathogenicity.


2008 ◽  
Vol 57 (11) ◽  
pp. 1383-1388 ◽  
Author(s):  
Takeaki Wajima ◽  
Somay Y. Murayama ◽  
Katsuhiko Sunaoshi ◽  
Eiichi Nakayama ◽  
Keisuke Sunakawa ◽  
...  

To determine the prevalence of macrolide antibiotic and levofloxacin resistance in infections with Streptococcus pyogenes (group A streptococcus or GAS), strains were collected from 45 medical institutions in various parts of Japan between October 2003 and September 2006. Four hundred and eighty-two strains from patients with GAS infections were characterized genetically. Strains were classified into four groups according to the type of infection: invasive infections (n=74) including sepsis, cellulitis and toxic-shock-like syndrome; acute otitis media (AOM; n=23); abscess (n=53); and pharyngotonsillitis (n=332). Among all strains, 32 emm types were identified; emm1 was significantly more common in invasive infections (39.2 %) and AOM (43.5 %) than in abscesses (3.8 %) or pharyngotonsillitis (10.2 %). emm12 and emm4 each accounted for 23.5 % of pharyngotonsillitis cases. Susceptibility of GAS strains to eight β-lactam agents was excellent, with MICs of 0.0005–0.063 μg ml−1. Macrolide-resistant strains accounted for 16.2 % of all strains, while the percentages of strains possessing the resistance genes erm(A), erm(B) and mef(A) were 2.5 %, 6.2 % and 7.5 %, respectively. Although no strains with high resistance to levofloxacin were found, strains with an MIC of 2–4 μg ml−1 (17.4 %) had amino acid substitutions at either Ser-79 or Asp-83 in ParC. These levofloxacin-intermediately resistant strains included 16 emm types, but macrolide-resistant strains were more likely than others to represent certain emm types.


2019 ◽  
Vol 216 (7) ◽  
pp. 1615-1629 ◽  
Author(s):  
Andreas Naegeli ◽  
Eleni Bratanis ◽  
Christofer Karlsson ◽  
Oonagh Shannon ◽  
Raja Kalluru ◽  
...  

Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.


Sign in / Sign up

Export Citation Format

Share Document