scholarly journals Ethanolamine Activates a Sensor Histidine Kinase Regulating Its Utilization in Enterococcus faecalis

2008 ◽  
Vol 190 (21) ◽  
pp. 7147-7156 ◽  
Author(s):  
María Florencia Del Papa ◽  
Marta Perego

ABSTRACT Enterococcus faecalis is a gram-positive commensal bacterium of the human intestinal tract. Its opportunistic pathogenicity has been enhanced by the acquisition of multiple antibiotic resistances, making the treatment of enterococcal infections an increasingly difficult problem. The extraordinary capacity of this organism to colonize and survive in a wide variety of ecological niches is attributable, at least in part, to signal transduction pathways mediated by two-component systems (TCS). Here, the ability of E. faecalis to utilize ethanolamine as the sole carbon source is shown to be dependent upon the RR-HK17 (EF1633-EF1632) TCS. Ethanolamine is an abundant compound in the human intestine, and thus, the ability of bacteria to utilize it as a source of carbon and nitrogen may provide an advantage for survival and colonization. Growth of E. faecalis in a synthetic medium with ethanolamine was abolished in the response regulator RR17 mutant strain. Transcription of the response regulator gene was induced by the presence of ethanolamine. Ethanolamine induced a 15-fold increase in the rate of autophosphorylation in vitro of the HK17 sensor histidine kinase, indicating that this is the ligand recognized by the sensor domain of the kinase. These results assign a role to the RR-HK17 TCS as coordinator of the enterococcal response to specific nutritional conditions existing at the site of bacterial invasion, the intestinal tract of an animal host.

2009 ◽  
Vol 191 (16) ◽  
pp. 5147-5158 ◽  
Author(s):  
Nicholas J. Shikuma ◽  
Jiunn C. N. Fong ◽  
Lindsay S. Odell ◽  
Barrett S. Perchuk ◽  
Michael T. Laub ◽  
...  

ABSTRACT Vibrio cholerae causes the disease cholera and inhabits aquatic environments. One key factor in the environmental survival of V. cholerae is its ability to form matrix-enclosed, surface-associated microbial communities known as biofilms. Mature biofilms rely on Vibrio polysaccharide to connect cells to each other and to a surface. We previously described a core regulatory network, which consists of two positive transcriptional regulators, VpsR and VpsT, and a negative transcriptional regulator HapR, that controls biofilm formation by regulating the expression of vps genes. In this study, we report the identification of a sensor histidine kinase, VpsS, which can control biofilm formation and activates the expression of vps genes. VpsS required the response regulator VpsR to activate vps expression. VpsS is a hybrid sensor histidine kinase that is predicted to contain both histidine kinase and response regulator domains, but it lacks a histidine phosphotransferase (HPT) domain. We determined that VpsS acts through the HPT protein LuxU, which is involved in a quorum-sensing signal transduction network in V. cholerae. In vitro analysis of phosphotransfer relationships revealed that LuxU can specifically reverse phosphotransfer to CqsS, LuxQ, and VpsS. Furthermore, mutational and phenotypic analyses revealed that VpsS requires the response regulator LuxO to activate vps expression, and LuxO positively regulates the transcription of vpsR and vpsT. The induction of vps expression via VpsS was also shown to occur independent of HapR. Thus, VpsS utilizes components of the quorum-sensing pathway to modulate biofilm formation in V. cholerae.


2005 ◽  
Vol 390 (3) ◽  
pp. 769-776 ◽  
Author(s):  
Sarah Sanowar ◽  
Hervé Le Moual

Two-component signal-transduction systems are widespread in bacteria. They are usually composed of a transmembrane histidine kinase sensor and a cytoplasmic response regulator. The PhoP/PhoQ two-component system of Salmonella typhimurium contributes to virulence by co-ordinating the adaptation to low concentrations of environmental Mg2+. Limiting concentrations of extracellular Mg2+ activate the PhoP/PhoQ phosphorylation cascade modulating the transcription of PhoP-regulated genes. In contrast, high concentrations of extracellular Mg2+ stimulate the dephosphorylation of the response regulator PhoP by the PhoQ kinase sensor. In the present study, we report the purification and functional reconstitution of PhoQHis, a PhoQ variant with a C-terminal His tag, into Escherichia coli liposomes. The functionality of PhoQHis was essentially similar to that of PhoQ as shown in vivo and in vitro. Purified PhoQHis was inserted into liposomes in a unidirectional orientation, with the sensory domain facing the lumen and the catalytic domain facing the extraluminal environment. Reconstituted PhoQHis exhibited all the catalytic activities that have been described for histidine kinase sensors. Reconstituted PhoQHis was capable of autokinase activity when incubated in the presence of Mg2+-ATP. The phosphoryl group could be transferred from reconstituted PhoQHis to PhoP. Reconstituted PhoQHis catalysed the dephosphorylation of phospho-PhoP and this activity was stimulated by the addition of extraluminal ADP.


2000 ◽  
Vol 182 (8) ◽  
pp. 2068-2076 ◽  
Author(s):  
Dagmar Beier ◽  
Rainer Frank

ABSTRACT Two-component systems are frequently involved in the adaptation of bacteria to changing environmental conditions at the level of transcriptional regulation. Here we report the characterization of members of the two-component systems of the gastric pathogenHelicobacter pylori deduced from the genome sequence of strain 26695. We demonstrate that the response regulators HP166, HP1043, and HP1021 have essential functions, as disruption of the corresponding genes is lethal for the bacteria, irrespective of the fact that HP1043 and HP1021 have nonconserved substitutions in crucial amino acids of their receiver domains. An analysis of the in vitro phosphorylation properties of the two-component proteins demonstrates that HP244-HP703 and HP165-HP166 are cognate histidine kinase-response regulator pairs. Furthermore, we provide evidence that the variability of the histidine kinase HP165 caused by a poly(C) tract of variable length close to the 3′ end of open reading frame 165/164 does not interfere with the kinase activity of the transmitter domain of HP165.


2003 ◽  
Vol 71 (8) ◽  
pp. 4463-4471 ◽  
Author(s):  
Nicolas Autret ◽  
Catherine Raynaud ◽  
Iharilalao Dubail ◽  
Patrick Berche ◽  
Alain Charbit

ABSTRACT Listeria monocytogenes is a gram-positive facultative intracellular food-borne pathogen that can cause severe infections in humans and animals. We have recently adapted signature-tagged transposon mutagenesis (STM) to identify genes involved in the virulence of L. monocytogenes. A new round of STM allowed us to identify a new locus encoding a protein homologous to AgrA, the well-studied response regulator of Staphylococcus aureus and part of a two-component system involved in bacterial virulence. The production of several secreted proteins was modified in the agrA mutant of L. monocytogenes grown in broth, indicating that the agr locus influenced protein secretion. Inactivation of agrA did not affect the ability of the pathogen to invade and multiply in cells in vitro. However, the virulence of the agrA mutant was attenuated in the mouse (a 10-fold increase in the 50% lethal dose by the intravenous route), demonstrating for the first time a role for the agr locus in the virulence of L. monocytogenes.


Microbiology ◽  
2014 ◽  
Vol 160 (4) ◽  
pp. 795-806 ◽  
Author(s):  
Marcia Shu-Wei Su ◽  
Michael G. Gänzle

This study characterized the two-component regulatory systems encoded by bfrKRT and cemAKR, and assessed their influence on biofilm formation by Lactobacillus reuteri 100-23. A method for deletion of multiple genes was employed to disrupt the genetic loci of two-component systems. The operons bfrKRT and cemAKR showed complementary organization. Genes bfrKRT encode a histidine kinase, a response regulator and an ATP-binding cassette-type transporter with a bacteriocin-processing peptidase domain, respectively. Genes cemAKR code for a signal peptide, a histidine kinase and a response regulator, respectively. Deletion of single or multiple genes in the operons bfrKRT and cemAKR did not affect cell morphology, growth or the sensitivity to various stressors. However, gene disruption affected biofilm formation; this effect was dependent on the carbon source. Deletion of bfrK or cemA increased sucrose-dependent biofilm formation in vitro. Glucose-dependent biofilm formation was particularly increased by deletion of cemK. The expression of cemK and cemR was altered by deletion of bfrK, indicating cross-talk between these two regulatory systems. These results may contribute to our understanding of the genetic factors related to the biofilm formation and competitiveness of L. reuteri in intestinal ecosystems.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Helmut Hirt ◽  
Kerryl E. Greenwood-Quaintance ◽  
Melissa J. Karau ◽  
Lisa M. Till ◽  
Purna C. Kashyap ◽  
...  

ABSTRACT Cell-cell communication mediated by peptide pheromones (cCF10 [CF]) is essential for high-frequency plasmid transfer in vitro in Enterococcus faecalis. To examine the role of pheromone signaling in vivo, we established either a CF-producing (CF+) recipient or a recipient producing a biologically inactive variant of CF (CF− recipient) in a germfree mouse model 3 days before donor inoculation and determined transfer frequencies of the pheromone-inducible plasmid pCF10. Plasmid transfer was detected in the upper and middle sections of the intestinal tract 5 h after donor inoculation and was highly efficient in the absence of antibiotic selection. The transconjugant/donor ratio reached a maximum level approaching 1 on day 4 in the upper intestinal tract. Plasmid transfer was significantly lower with the CF− recipient. While rescue of the CF− mating defect by coculture with CF+ recipients is easily accomplished in vitro, no extracellular complementation occurred in vivo. This suggests that most pheromone signaling in the gut occurs between recipient and donor cells in very close proximity. Plasmid-bearing cells (donors plus transconjugants) steadily increased in the population from 0.1% after donor inoculation to about 10% at the conclusion of the experiments. This suggests a selective advantage of pCF10 carriage distinct from antibiotic resistance or bacteriocin production. Our results demonstrate that pheromone signaling is required for efficient pCF10 transfer in vivo. In the absence of CF+ recipients, a low level of transfer to CF− recipients occurred in the gut. This may result from low-level host-mediated induction of the donors in the gastrointestinal (GI) tract, similar to that previously observed in serum. IMPORTANCE Horizontal gene transfer is a major factor in the biology of Enterococcus faecalis, an important nosocomial pathogen. Previous studies showing efficient conjugative plasmid transfer in the gastrointestinal (GI) tracts of experimental animals did not examine how the enterococcal sex pheromone response impacts the efficiency of transfer. Our study demonstrates for the first time pheromone-enhanced, high-frequency plasmid transfer of E. faecalis plasmid pCF10 in a mouse model in the absence of antibiotic or bacteriocin selection. Pheromone production by recipients dramatically increased plasmid transfer in germfree mice colonized initially with recipients, followed by donors. The presence of a coresident community of common gut microbes did not significantly reduce in vivo plasmid transfer between enterococcal donors and recipients. In mice colonized with enterococcal recipients, we detected plasmid transfer in the intestinal tract within 5 h of addition of donors, before transconjugants could be cultured from feces. Surprisingly, pCF10 carriage provided a competitive fitness advantage unrelated to antibiotic resistance or bacteriocin production.


2006 ◽  
Vol 27 (3) ◽  
pp. 128
Author(s):  
Cynthia B Whitchurch

The ?2-component? regulatory systems of bacteria are the predominant signal transduction mechanisms that bacteria utilise to modulate behaviours and metabolism in response to environmental changes. These systems classically involve two proteins ? a membrane bound sensor histidine kinase and a soluble response regulator.


2021 ◽  
Author(s):  
Paola K. Párraga Solórzano ◽  
Angela C. Shupe ◽  
Thomas E. Kehl-Fie

Staphylococcus aureus is a versatile opportunistic pathogen whose success is driven by its ability to adapt to diverse environments and host-imposed stresses. Two-component signal transduction systems, such as ArlRS, often mediate these adaptations. Loss of ArlRS or the response regulator ArlR alone impairs the ability of S. aureus to respond to host-imposed manganese starvation and glucose limitation. As sensor histidine kinases and response regulators frequently work as pairs, it has been assumed that ArlS senses and activates ArlR in response to these stimuli. However, recent work suggests that the sensor histidine kinase GraS can also activate ArlR, calling the contribution of ArlS in responding to manganese and glucose availability into question. The current studies reveal that ArlS is necessary to activate ArlR in response to manganese sequestration by the host immune effector calprotectin and glucose limitation. Although the loss of ArlS does not completely eliminate ArlR activity, this response regulator is no longer responsive to manganese or glucose availability in the absence of its cognate histidine kinase. Despite the residual activity of ArlR in the absence of ArlS, ArlR phosphorylation by ArlS is required for S. aureus to resist calprotectin-imposed metal starvation. Cumulatively, these findings contribute to the understanding of S. aureus signaling transduction in response to nutritional immunity and support the previous observation that indicates ArlRS is activated by a common signal derived from host-imposed manganese and glucose limitation. IMPORTANCE The ability of pathogens, including Staphylococcus aureus , to sense and adapt to diverse environments partially relies on two-component systems, such as ArlRS. Recent work revealed that the response regulator ArlR can be cross-activated by the sensor histidine kinase GraS, rendering the role of its cognate partner, ArlS, in response to manganese and glucose limitation uncertain. This study reveals that ArlS is necessary for the activation of ArlR in response to calprotectin and glucose limitation. Although a low level of ArlR activity remains in the absence of ArlS, ArlS phosphotransfer to ArlR is required for S. aureus to overcome calprotectin-induced nutritional stress. Collectively, this study provides fundamental information to understand how ArlRS mediates staphylococcal adaptation during infection.


2008 ◽  
Vol 190 (20) ◽  
pp. 6559-6567 ◽  
Author(s):  
Tomas Fiedler ◽  
Maren Mix ◽  
Uta Meyer ◽  
Stefan Mikkat ◽  
Michael O. Glocker ◽  
...  

ABSTRACT The phoPR gene locus of Clostridium acetobutylicum ATCC 824 comprises two genes, phoP and phoR. Deduced proteins are predicted to represent a response regulator and sensor kinase of a phosphate-dependent two-component regulatory system. We analyzed the expression patterns of phoPR in Pi-limited chemostat cultures and in response to Pi pulses. A basic transcription level under high-phosphate conditions was shown, and a significant increase in mRNA transcript levels was found when external Pi concentrations dropped below 0.3 mM. In two-dimensional gel electrophoresis experiments, a 2.5-fold increase in PhoP was observed under Pi-limiting growth conditions compared to growth with an excess of Pi. At least three different transcription start points for phoP were determined by primer extension analyses. Proteins PhoP and an N-terminally truncated *PhoR were individually expressed heterologously in Escherichia coli and purified. Autophosphorylation of *PhoR and phosphorylation of PhoP were shown in vitro. Electromobility shift assays proved that there was a specific binding of PhoP to the promoter region of the phosphate-regulated pst operon of C. acetobutylicum.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Brian J. Werth ◽  
Laura M. Shireman

ABSTRACT The combination of ampicillin plus ceftaroline has been suggested to be more reliably synergistic against Enterococcus faecalis than ampicillin plus ceftriaxone using time-kill methods. The purpose of this study was to determine if this trend persists in a two-compartment model of simulated endocardial vegetations (SEV) using clinically relevant pharmacokinetic exposures of these antimicrobials. Three clinically derived E. faecalis strains were included in the study. The MICs of study antimicrobials were determined by broth microdilution. Simulations of ampicillin (2 g every 4 h [q4h]; maximum concentration of drug in serum [C max], 72.4 mg/liter; half-life [t 1/2], 1.9 h), ceftaroline-fosamil (600 mg q8h; C max, 21.3 mg/liter; t 1/2, 2.66 h), ceftriaxone (C max, 257 mg/liter; t 1/2, 8 h), and ampicillin plus ceftaroline and ampicillin plus ceftriaxone were evaluated against 3 strains of E. faecalis isolated from patients with endocarditis in an in vitro PK/PD SEV model over 72 h, with a starting inoculum of ∼9 log10 CFU/g. All strains were susceptible to ampicillin (MIC, ≤2 mg/liter). Ceftaroline MICs varied from 2 to 16 mg/liter. All strains had ceftriaxone MICs of 256 mg/liter. W04 and W151 exhibited high-level aminoglycoside resistance but W07 did not. Ampicillin plus ceftaroline resulted in significantly greater reductions in CFU per gram by 72 h than ampicillin for all strains (P ≤ 0.025) than ampicillin plus ceftriaxone for W04 (P = 0.019) but not W07 or W151 (P ≥ 0.15). A 4-fold increase in ampicillin MIC was observed for W07 at 72 h, but this was prevented by the addition of ceftaroline or ceftriaxone. The combination of ampicillin plus ceftaroline appears to be at least as efficacious as ampicillin plus ceftriaxone and may lead to improved activity against some strains of E. faecalis, but these differences may be small and the clinical significance should not be overestimated.


Sign in / Sign up

Export Citation Format

Share Document