scholarly journals Modulation of Decoding Fidelity by Ribosomal Proteins S4 and S5

2014 ◽  
Vol 197 (6) ◽  
pp. 1017-1025 ◽  
Author(s):  
Deepali Agarwal ◽  
Divya Kamath ◽  
Steven T. Gregory ◽  
Michael O'Connor

Ribosomal proteins S4 and S5 participate in the decoding and assembly processes on the ribosome and the interaction with specific antibiotic inhibitors of translation. Many of the characterized mutations affecting these proteins decrease the accuracy of translation, leading to a ribosomal-ambiguity phenotype. Structural analyses of ribosomal complexes indicate that the tRNA selection pathway involves a transition between the closed and open conformations of the 30S ribosomal subunit and requires disruption of the interface between the S4 and S5 proteins. In agreement with this observation, several of the mutations that promote miscoding alter residues located at the S4-S5 interface. Here, theEscherichia colirpsDandrpsEgenes encoding the S4 and S5 proteins were targeted for mutagenesis and screened for accuracy-altering mutations. While a majority of the 38 mutant proteins recovered decrease the accuracy of translation, error-restrictive mutations were also recovered; only a minority of the mutant proteins affected rRNA processing, ribosome assembly, or interactions with antibiotics. Several of the mutations affect residues at the S4-S5 interface. These include five nonsense mutations that generate C-terminal truncations of S4. These truncations are predicted to destabilize the S4-S5 interface and, consistent with the domain closure model, all have ribosomal-ambiguity phenotypes. A substantial number of the mutations alter distant locations and conceivably affect tRNA selection through indirect effects on the S4-S5 interface or by altering interactions with adjacent ribosomal proteins and 16S rRNA.

1999 ◽  
Vol 19 (8) ◽  
pp. 5441-5452 ◽  
Author(s):  
Sarah J. Lee ◽  
Susan J. Baserga

ABSTRACT The function of the U3 small nucleolar ribonucleoprotein (snoRNP) is central to the events surrounding pre-rRNA processing, as evidenced by the severe defects in cleavage of pre-18S rRNA precursors observed upon depletion of the U3 RNA and its unique protein components. Although the precise function of each component remains unclear, since U3 snoRNA levels remain unchanged upon genetic depletion of these proteins, it is likely that the proteins themselves have significant roles in the cleavage reactions. Here we report the identification of two previously undescribed protein components of the U3 snoRNP, representing the first snoRNP components identified by using the two-hybrid methodology. By screening for proteins that physically associate with the U3 snoRNP-specific protein, Mpp10p, we have identified Imp3p (22 kDa) and Imp4p (34 kDa) (named for interacting with Mpp10p). The genes encoding both proteins are essential in yeast. Genetic depletion reveals that both proteins are critical for U3 snoRNP function in pre-18S rRNA processing at the A0, A1, and A2 sites in the pre-rRNA. Both Imp proteins associate with Mpp10p in vivo, and both are complexed only with the U3 snoRNA. Conservation of RNA binding domains between Imp3p and the S4 family of ribosomal proteins suggests that it might associate with RNA directly. However, as with other U3 snoRNP-specific proteins, neither Imp3p nor Imp4p is required for maintenance of U3 snoRNA integrity. Imp3p and Imp4p are therefore novel protein components specific to the U3 snoRNP with critical roles in pre-rRNA cleavage events.


2000 ◽  
Vol 11 (11) ◽  
pp. 3777-3789 ◽  
Author(s):  
Tracy Stage-Zimmermann ◽  
Ute Schmidt ◽  
Pamela A. Silver

In Saccharomyces cerevisiae, the 60S ribosomal subunit assembles in the nucleolus and then is exported to the cytoplasm, where it joins the 40S subunit for translation. Export of the 60S subunit from the nucleus is known to be an energy-dependent and factor-mediated process, but very little is known about the specifics of its transport. To begin to address this problem, an assay was developed to follow the localization of the 60S ribosomal subunit inS. cerevisiae. Ribosomal protein L11b (Rpl11b), one of the ∼45 ribosomal proteins of the 60S subunit, was tagged at its carboxyl terminus with the green fluorescent protein (GFP) to enable visualization of the 60S subunit in living cells. A panel of mutant yeast strains was screened for their accumulation of Rpl11b–GFP in the nucleus as an indicator of their involvement in ribosome synthesis and/or transport. This panel included conditional alleles of several rRNA-processing factors, nucleoporins, general transport factors, and karyopherins. As predicted, conditional alleles of rRNA-processing factors that affect 60S ribosomal subunit assembly accumulated Rpl11b–GFP in the nucleus. In addition, several of the nucleoporin mutants as well as a few of the karyopherin and transport factor mutants also mislocalized Rpl11b–GFP. In particular, deletion of the previously uncharacterized karyopherin KAP120 caused accumulation of Rpl11b–GFP in the nucleus, whereas ribosomal protein import was not impaired. Together, these data further define the requirements for ribosomal subunit export and suggest a biological function for KAP120.


2016 ◽  
Vol 198 (18) ◽  
pp. 2494-2502 ◽  
Author(s):  
Leonid V. Aseev ◽  
Ludmila S. Koledinskaya ◽  
Irina V. Boni

ABSTRACTIt is widely assumed that in the best-characterized model bacteriumEscherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for severalE. colir-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time thein vivoregulation of three r-protein operons,rplM-rpsI,rpmB-rpmG, andrplU-rpmA. The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomallacZgene, we show here that at the translation level only one of these operons,rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5′ untranslated region (UTR) of the operon mRNA, whilerpmB-rpmGandrplU-rpmAare not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression ofE. colir-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor ofrplM-rpsIexpressionin vivo, acting at a target within therplMtranslation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria.IMPORTANCEIt is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.


1997 ◽  
Vol 17 (9) ◽  
pp. 5023-5032 ◽  
Author(s):  
A Baudin-Baillieu ◽  
D Tollervey ◽  
C Cullin ◽  
F Lacroute

During the functional analysis of open reading frames (ORFs) identified during the sequencing of chromosome III of Saccharomyces cerevisiae, the previously uncharacterized ORF YCL031C (now designated RRP7) was deleted. RRP7 is essential for cell viability, and a conditional null allele was therefore constructed, by placing its expression under the control of a regulated GAL promoter. Genetic depletion of Rrp7p inhibited the pre-rRNA processing steps that lead to the production of the 20S pre-rRNA, resulting in reduced synthesis of the 18S rRNA and a reduced ratio of 40S to 60S ribosomal subunits. A screen for multicopy suppressors of the lethality of the GAL::rrp7 allele isolated the two genes encoding a previously unidentified ribosomal protein (r-protein) that is highly homologous to the rat r-protein S27. When present in multiple copies, either gene can suppress the lethality of an RRP7 deletion mutation and can partially restore the ribosomal subunit ratio in Rrp7p-depleted cells. Deletion of both r-protein genes is lethal; deletion of either single gene has an effect on pre-rRNA processing similar to that of Rrp7p depletion. We believe that Rrp7p is required for correct assembly of rpS27 into the preribosomal particle, with the inhibition of pre-rRNA processing appearing as a consequence of this defect.


2014 ◽  
Vol 58 (4) ◽  
pp. 2038-2044 ◽  
Author(s):  
Yuan Lin ◽  
Yan Li ◽  
Ningyu Zhu ◽  
Yanxing Han ◽  
Wei Jiang ◽  
...  

ABSTRACTCapreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin.Mycobacterium tuberculosisribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 inM. smegmatis, a species close toM. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.


2015 ◽  
Vol 59 (10) ◽  
pp. 6026-6031 ◽  
Author(s):  
Sarah C. Schneider ◽  
Regula Tinguely ◽  
Sara Droz ◽  
Markus Hilty ◽  
Valentina Donà ◽  
...  

ABSTRACTAntibiotic resistance inUreaplasma urealyticum/Ureaplasma parvumandMycoplasma hominisis an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencinggyrA, gyrB,parC, andparEgenes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive forU. urealyticum/U. parvum, whereas 21 were positive for bothU. urealyticum/U. parvumandM. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu inU. parvumof serovar 6) and ParE (Val417Thr inU. parvumof serovar 1 and the novel Thr417Val substitution inU. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility ofU. urealyticum/U. parvumisolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse. Large combined microbiological and clinical studies should address this important issue.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Vanja Stojković ◽  
María Fernanda Ulate ◽  
Fanny Hidalgo-Villeda ◽  
Emmanuel Aguilar ◽  
Camilo Monge-Cascante ◽  
...  

ABSTRACT Cfr is a radical S-adenosyl-l-methionine (SAM) enzyme that confers cross-resistance to antibiotics targeting the 23S rRNA through hypermethylation of nucleotide A2503. Three cfr-like genes implicated in antibiotic resistance have been described, two of which, cfr(B) and cfr(C), have been sporadically detected in Clostridium difficile. However, the methylase activity of Cfr(C) has not been confirmed. We found cfr(B), cfr(C), and a cfr-like gene that shows only 51 to 58% protein sequence identity to Cfr and Cfr-like enzymes in clinical C. difficile isolates recovered across nearly a decade in Mexico, Honduras, Costa Rica, and Chile. This new resistance gene was termed cfr(E). In agreement with the anticipated function of the cfr-like genes detected, all isolates exhibited high MIC values for several ribosome-targeting antibiotics. In addition, in vitro assays confirmed that Cfr(C) and Cfr(E) methylate Escherichia coli and, to a lesser extent, C. difficile 23S rRNA fragments at the expected positions. The analyzed isolates do not have mutations in 23S rRNA genes or genes encoding the ribosomal proteins L3 and L4 and lack poxtA, optrA, and pleuromutilin resistance genes. Moreover, these cfr-like genes were found in Tn6218-like transposons or integrative and conjugative elements (ICE) that could facilitate their transfer. These results indicate selection of potentially mobile cfr-like genes in C. difficile from Latin America and provide the first assessment of the methylation activity of Cfr(C) and Cfr(E), which belong to a cluster of Cfr-like proteins that does not include the functionally characterized enzymes Cfr, Cfr(B), and Cfr(D).


2014 ◽  
Vol 80 (14) ◽  
pp. 4294-4300 ◽  
Author(s):  
Xiao-Dan Liu ◽  
Lixia Xie ◽  
Yi Wei ◽  
Xiaoyang Zhou ◽  
Baolei Jia ◽  
...  

ABSTRACTRibosomal proteins are highly conserved components of basal cellular organelles, primarily involved in the translation of mRNA leading to protein synthesis. However, certain ribosomal proteins moonlight in the development and differentiation of organisms. In this study, the ribosomal protein L44 (RPL44), associated with salt resistance, was screened from the halophilic fungusAspergillus glaucus(AgRPL44), and its activity was investigated inSaccharomyces cerevisiaeandNicotiana tabacum. Sequence alignment revealed that AgRPL44 is one of the proteins of the large ribosomal subunit 60S. Expression ofAgRPL44was upregulated via treatment with salt, sorbitol, or heavy metals to demonstrate its response to osmotic stress. A homologous sequence from the model fungusMagnaporthe oryzae, MoRPL44, was cloned and compared withAgRPL44in a yeast expression system. The results indicated that yeast cells with overexpressedAgRPL44were more resistant to salt, drought, and heavy metals than were yeast cells expressingMoRPL44at a similar level of stress. WhenAgRPL44was introduced intoM. oryzae, the transformants displayed obviously enhanced tolerance to salt and drought, indicating the potential value ofAgRPL44for genetic applications. To verify the value of its application in plants, tobacco was transformed withAgRPL44, and the results were similar. Taken together, we conclude thatAgRPL44supports abiotic stress resistance and may have value for genetic application.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1107-1116
Author(s):  
Amy L Tabb ◽  
Takahiko Utsugi ◽  
Clavia R Wooten-Kee ◽  
Takeshi Sasaki ◽  
Steven A Edling ◽  
...  

Abstract The Saccharomyces cerevisiae RPS0A/B genes encode proteins of the 40S ribosomal subunit that are required for the maturation of 18S rRNA. We show here that the RPS0 genes interact genetically with TOM1. TOM1 encodes a member of the hect-domain-containing E3 ubiquitin-protein ligase family that is required for growth at elevated temperatures. Mutant alleles of the RPS0 and TOM1 genes have synergistic effects on cell growth at temperatures permissive for TOM1 mutants. Moreover, the growth arrest of TOM1 mutants at elevated temperatures is partially suppressed by overexpression of RPS0A/B. Strains with mutant alleles of TOM1 are defective in multiple steps in rRNA processing, and interactions between RPS0A/B and TOM1 stem, in part, from their roles in the maturation of ribosomal subunits. Ribosome synthesis is therefore included among the cellular processes governed by members of the hect-domain-containing E3 ubiquitin-protein ligase family.


2020 ◽  
Vol 71 (9) ◽  
pp. 2596-2611
Author(s):  
Ilyeong Choi ◽  
Young Jeon ◽  
Youngki Yoo ◽  
Hyun-Soo Cho ◽  
Hyun-Sook Pai

Abstract Yeast Rpf2 plays a critical role in the incorporation of 5S rRNA into pre-ribosomes by forming a binary complex with Rrs1. The protein characteristics and overexpression phenotypes of Arabidopsis Ribosome Production Factor 2 (ARPF2) and Arabidopsis Regulator of Ribosome Synthesis 1 (ARRS1) have been previously studied. Here, we analyze loss-of-function phenotypes of ARPF2 and ARRS1 using virus-induced gene silencing to determine their functions in pre-rRNA processing and ribosome biogenesis. ARPF2 silencing in Arabidopsis led to pleiotropic developmental defects. RNA gel blot analysis and circular reverse transcription–PCR revealed that ARPF2 depletion delayed pre-rRNA processing, resulting in the accumulation of multiple processing intermediates. ARPF2 fractionated primarily with the 60S ribosomal subunit. Metabolic rRNA labeling and ribosome profiling suggested that ARPF2 deficiency mainly affected 25S rRNA synthesis and 60S ribosome biogenesis. ARPF2 and ARRS1 formed the complex that interacted with the 60S ribosomal proteins RPL5 and RPL11. ARRS1 silencing resulted in growth defects, accumulation of processing intermediates, and ribosome profiling similar to those of ARPF2-silenced plants. Moreover, depletion of ARPF2 and ARRS1 caused nucleolar stress. ARPF2-deficient plants excessively accumulated anthocyanin and reactive oxygen species. Collectively, these results suggest that the ARPF2–ARRS1 complex plays a crucial role in plant growth and development by modulating ribosome biogenesis.


Sign in / Sign up

Export Citation Format

Share Document