scholarly journals The Arcanobacterium(Actinomyces) pyogenes Plasmid pAP1 Is a Member of the pIJ101/pJV1 Family of Rolling Circle Replication Plasmids

1998 ◽  
Vol 180 (12) ◽  
pp. 3233-3236 ◽  
Author(s):  
Stephen J. Billington ◽  
B. Helen Jost ◽  
J. Glenn Songer

ABSTRACT The 2.4-kb plasmid pAP1 from Arcanobacterium(Actinomyces) pyogenes had sequence similarity within the putative replication protein and double-stranded origin with the pIJ101/pJV1 family of plasmids. pJGS84, a derivative of pAP1 containing a kanamycin resistance gene, was able to replicate inEscherichia coli and Corynebacterium pseudotuberculosis, as well as in A. pyogenes. Detection of single-stranded DNA intermediates of pJGS84 replication suggested that this plasmid replicates by the rolling circle mechanism.

2020 ◽  
Vol 42 (11) ◽  
pp. 2223-2230
Author(s):  
Rafael A. Donassolo ◽  
Marcos Roberto A. Ferreira ◽  
Clóvis Moreira Jr ◽  
Lucas M. dos Santos ◽  
Emili Griep ◽  
...  

2006 ◽  
Vol 72 (2) ◽  
pp. 1288-1294 ◽  
Author(s):  
David-Nicolas Chaperon

ABSTRACT This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3′-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases.


2001 ◽  
Vol 67 (9) ◽  
pp. 4335-4337 ◽  
Author(s):  
Chloe E. James ◽  
Karen N. Stanley ◽  
Heather E. Allison ◽  
Harry J. Flint ◽  
Colin S. Stewart ◽  
...  

ABSTRACT A verocytotoxigenic bacteriophage isolated from a strain of enterohemorrhagic Escherichia coli O157, into which a kanamycin resistance gene (aph3) had been inserted to inactivate the verocytotoxin gene (vt2 ), was used to infect Enterobacteriaceae strains. A number ofShigella and E. coli strains were susceptible to lysogenic infection, and a smooth E. coli isolate (O107) was also susceptible to lytic infection. The lysogenized strains included different smooth E. coli serotypes of both human and animal origin, indicating that this bacteriophage has a substantial capacity to disseminate verocytotoxin genes. A novel indirect plaque assay utilizing an E. coli recA441 mutant in which phage-infected cells can enter only the lytic cycle, enabling detection of all infective phage, was developed.


2011 ◽  
Vol 77 (10) ◽  
pp. 3532-3535 ◽  
Author(s):  
Caray A. Walker ◽  
Willie Donachie ◽  
David G. E. Smith ◽  
Michael C. Fontaine

ABSTRACTA two-step allele replacement mutagenesis procedure, using a conditionally replicating plasmid, was developed to allow the creation of targeted, marker-free mutations inCorynebacterium pseudotuberculosis. The relationship between homologous sequence length and recombination frequency was determined, and enhanced plasmid excision was observed due to the rolling-circle replication of the mutagenesis vector. Furthermore, an antibiotic enrichment procedure was applied to improve the recovery of mutants. Subsequently, as proof of concept, a marker-free,cp40-deficient mutant ofC. pseudotuberculosiswas constructed.


2001 ◽  
Vol 69 (4) ◽  
pp. 2137-2143 ◽  
Author(s):  
Karen B. Register ◽  
Thomas F. Ducey ◽  
Susan L. Brockmeier ◽  
David W. Dyer

ABSTRACT One means by which Bordetella bronchiseptica scavenges iron is through production of the siderophore alcaligin. A nonrevertible alcaligin mutant derived from the virulent strain 4609, designated DBB25, was constructed by insertion of a kanamycin resistance gene into alcA, one of the genes essential for alcaligin biosynthesis. The virulence of the alcA mutant in colostrum-deprived, caesarean-delivered piglets was compared with that of the parent strain in two experiments. At 1 week of age, piglets were inoculated with phosphate-buffered saline, 4609, or DBB25. Two piglets in each group were euthanatized on day 10 postinfection. The remainder were euthanatized at 21 days postinfection. Clinical signs, including fever, coughing, and sneezing, were present in both groups. Nasal washes performed 7, 14, and 21 days postinoculation demonstrated that strain DBB25 colonized the nasal cavity but did so at levels that were significantly less than those achieved by strain 4609. Analysis of colonization based on the number of CFU per gram of tissue recovered from the turbinate, trachea, and lung also demonstrated significant differences between DBB25 and 4609, at both day 10 and day 21 postinfection. Mild to moderate turbinate atrophy was apparent in pigs inoculated with strain 4609, while turbinates of those infected with strain DBB25 developed no or mild atrophy. We conclude from these results that siderophore production by B. bronchiseptica is not essential for colonization of swine but is required for maximal virulence. B. bronchiseptica mutants with nonrevertible defects in genes required for alcaligin synthesis may be candidates for evaluation as attenuated, live vaccine strains in conventionally reared pigs.


Sign in / Sign up

Export Citation Format

Share Document