scholarly journals Identification of a Novel SalmonellaInvasion Locus Homologous to Shigella ipgDE

1998 ◽  
Vol 180 (7) ◽  
pp. 1793-1802 ◽  
Author(s):  
K. Heran Hong ◽  
Virginia L. Miller

ABSTRACT Genes essential for Salmonella typhimurium invasion have been localized to Salmonella pathogenicity island 1 (SPI1) on the chromosome. However, it is clear that other genes are required for the invasion process. Mutations that abolish the SPI1 invasion type III secretion system do not significantly reduce invasion into Chinese hamster ovary tissue culture cells. Two invasion defective mutants were isolated by screening 2,500 Tn10dTc insertion mutants of S. typhimurium in the tissue culture invasion assay. One of the invasion mutants, SVM167, has an insertion between centisomes 24.5 and 25.5 in an operon homologous to theipgDEF operon of the Shigella flexneri andShigella sonnei virulence plasmid. A second mutant, SVM168, has an insertion in an IS3-type element with homology to the Salmonella enteritidis IS1351 element andYersinia enterocolitica IS1400 element from a high-pathogenicity island. Further characterization of SVM167 showed that culture supernatants from this mutant lack a previously uncharacterized protein that is also missing from culture supernatants of a SPI1 mutant, suggesting it can be secreted by the SPI1 type III secretion system. In addition, transcription of this operon,sigDE (Salmonella invasion gene), is dependent on the presence of sirA, an activator of hilAexpression. HilA activates transcription of several of the SPI1 genes but does not appear to have a major role in activation of transcription from the sigDE promoter.

Microbiology ◽  
2011 ◽  
Vol 157 (3) ◽  
pp. 839-847 ◽  
Author(s):  
Manon Rosselin ◽  
Nadia Abed ◽  
Isabelle Virlogeux-Payant ◽  
Elisabeth Bottreau ◽  
Pierre-Yves Sizaret ◽  
...  

Salmonella causes a wide range of diseases from acute gastroenteritis to systemic typhoid fever, depending on the host. To invade non-phagocytic cells, Salmonella has developed different mechanisms. The main invasion system requires a type III secretion system (T3SS) known as T3SS-1, which promotes a Trigger entry mechanism. However, other invasion factors have recently been described in Salmonella, including Rck and PagN, which were not expressed under our bacterial culture conditions. Based on these observations, we used adhesion and invasion assays to analyse the respective roles of Salmonella Enteritidis T3SS-1-dependent and -independent invasion processes at different times of infection. Diverse cell lines and cell types were tested, including endothelial, epithelial and fibroblast cells. We demonstrated that cell susceptibility to the T3SS-1-independent entry differs by a factor of nine between the most and the least permissive cell lines tested. In addition, using scanning electron and confocal microscopy, we showed that T3SS-1-independent entry into cells was characterized by a Trigger-like alteration, as for the T3SS-1-dependent entry, and also by Zipper-like cellular alteration. Our results demonstrate for what is believed to be the first time that Salmonella can induce Trigger-like entry independently of T3SS-1 and can induce Zipper-like entry independently of Rck. Overall, these data open new avenues for discovering new invasion mechanisms in Salmonella.


2006 ◽  
Vol 75 (2) ◽  
pp. 574-580 ◽  
Author(s):  
Brian K. Coombes ◽  
Michael J. Lowden ◽  
Jennifer L. Bishop ◽  
Mark E. Wickham ◽  
Nat F. Brown ◽  
...  

ABSTRACT Bacterial pathogens use horizontal gene transfer to acquire virulence factors that influence host colonization, alter virulence traits, and ultimately shape the outcome of disease following infection. One hallmark of the host-pathogen interaction is the prokaryotic type III secretion system that translocates virulence factors into host cells during infection. Salmonella enterica possesses two type III secretion systems that are utilized during host colonization and intracellular replication. Salmonella pathogenicity island 2 (SPI2) is a genomic island containing approximately 30 contiguous genes required to assemble a functional secretion system including the two-component regulatory system called SsrA-SsrB that positively regulates transcription of the secretion apparatus. We used transcriptional profiling with DNA microarrays to search for genes that coregulate with the SPI2 type III secretion machinery in an SsrB-dependent manner. Here we report the identification of a Salmonella-specific translocated effector called SseL that is required for full virulence during murine typhoid-like disease. Analysis of infected macrophages using fluorescence-activated cell sorting revealed that sseL is induced inside cells and requires SsrB for expression. SseL is retained predominantly in the cytoplasm of infected cells following translocation by the type III system encoded in SPI2. Animal infection experiments with sseL mutant bacteria indicate that integration of SseL into the SsrB response regulatory system contributes to systemic virulence of this pathogen.


2007 ◽  
Vol 190 (2) ◽  
pp. 476-486 ◽  
Author(s):  
Jeremy R. Ellermeier ◽  
James M. Slauch

ABSTRACT The invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a type III secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). Expression of the SPI1 T3SS is tightly regulated by the combined action of HilC, HilD, and RtsA, three AraC family members that can independently activate hilA, which encodes the direct regulator of the SPI1 structural genes. Expression of hilC, hilD, and rtsA is controlled by a number of regulators that respond to a variety of environmental signals. In this work, we show that one such signal is iron mediated by Fur (ferric uptake regulator). Fur activates hilA transcription in a HilD-dependent manner. Fur regulation of HilD does not appear to be simply at the transcriptional or translational level but rather requires the presence of the HilD protein. Fur activation of SPI1 is not mediated through the Fur-regulated small RNAs RfrA and RfrB, which are the Salmonella ortholog and paralog of RyhB that control expression of sodB. Fur regulation of HilD is also not mediated through the known SPI1 repressor HilE or the CsrABC system. Although understanding the direct mechanism of Fur action on HilD requires further analysis, this work is an important step toward elucidating how various global regulatory systems control SPI1.


2011 ◽  
Vol 77 (13) ◽  
pp. 4293-4302 ◽  
Author(s):  
Matthew L. Rogge ◽  
Ronald L. Thune

ABSTRACTA recently describedEdwardsiella ictaluritype III secretion system (T3SS) with functional similarity to theSalmonellapathogenicity island 2 T3SS is required for replication in channel catfish head-kidney-derived macrophages (HKDM) and virulence in channel catfish. Quantitative PCR and Western blotting identified low pH and phosphate limitation as conducive to expression of theE. ictaluriT3SS, growth conditions that mimic the phagosomal environment. Mutagenesis studies demonstrated that expression is under the control of the EsrAB two-component regulatory system. EsrB also induces upregulation of the AraC-type regulatory protein EsrC, which enhances expression of the EscB/EseG chaperone/effector operon in concert with EsrB and induces expression of the pEI1-encoded effector, EseH. EsrC also induces expression of a putative type VI secretion system translocon protein, EvpC, which is secreted under the same low-pH conditions as the T3SS translocon proteins. The pEI2-encoded effector, EseI, was upregulated under low-pH and low-phosphate conditions but not in an EsrB- or EsrC-dependent manner. Mutations of EsrA and EsrB both resulted in loss of the ability to replicate in HKDM and full attenuation in the channel catfish host. Mutation of EsrC did not affect intracellular replication but did result in attenuation in catfish. Although EsrB is the primary transcriptional regulator forE. ictalurigenes within the T3SS pathogenicity island, EsrC regulates expression of the plasmid-carried effectoreseHand appears to mediate coordinated expression of the T6SS with the T3SS.


Microbiology ◽  
2003 ◽  
Vol 149 (5) ◽  
pp. 1103-1111 ◽  
Author(s):  
Javier Ruiz-Albert ◽  
Rosanna Mundy ◽  
Xiu-Jun Yu ◽  
Carmen R. Beuzón ◽  
David W. Holden

The type III secretion system (TTSS) encoded by the Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages and for systemic infection in mice. Many TTSS secreted proteins, including effectors and components of the translocon, require chaperones which promote their stability, prevent their premature interactions or facilitate their secretion. In this study, the function of the first gene (sseA) of one of the SPI-2 operons (sseA–G) was investigated. This operon includes genes that encode translocon components (SseB, SseC and SseD), translocated proteins (SseF and SseG) and putative chaperones (SscA and SscB). sseA encodes a 12·5 kDa protein with a C-terminal region with the potential to form a coiled-coil structure, but no sequence similarity to other proteins. Mutation of sseA results in severe virulence attenuation and an intracellular replication defect. It is shown here that SseA is not a secreted protein, but is required for SPI-2-dependent translocation of two effector proteins (SifA and PipB). Furthermore, the translocon components SseB and SseD were not detected in an sseA mutant strain. By using a yeast two-hybrid assay and column binding experiments, it is demonstrated that SseA interacts directly with SseB and SseD. These results indicate that SseA is a chaperone for SseB and SseD. The inability of an sseA mutant to assemble the SPI-2 TTSS translocon accounts for its high level of virulence attenuation in vivo. To the authors' knowledge, this is the first chaperone described for the SPI-2 TTSS.


2002 ◽  
Vol 184 (16) ◽  
pp. 4409-4419 ◽  
Author(s):  
Colleen D. Kane ◽  
Raymond Schuch ◽  
William A. Day ◽  
Anthony T. Maurelli

ABSTRACT The mxi-spa locus on the virulence plasmid of Shigella flexneri encodes components of the type III secretion system. mxiE, a gene within this locus, encodes a protein that is homologous to the AraC/XylS family of transcriptional regulators, but currently its role in pathogenesis remains undefined. We characterized the virulence phenotype of a nonpolar mxiE mutant and found that this mutant retained the ability to invade mammalian cells in tissue culture and secrete Ipas (type III effectors required for host cell invasion), although it was less efficient than wild-type Shigella at cell-to-cell spread. Despite its invasive properties in culture, the mxiE mutant was completely avirulent in an animal model. Potential targets for MxiE activation were identified by using promoter-green fluorescent protein fusions, and gene expression was examined under various growth conditions. Six MxiE-regulated genes were discovered: ospB, ospC1, ospE2, ospF, virA, and ipaH 9.8. Notably, activation of these genes only occurred within the intracellular environment of the host and not during growth at 37°C in liquid culture. Interestingly, all of the MxiE-regulated proteins previously have been shown to be secreted through the type III secretion system and are putative virulence factors. Our findings suggest that some of these Osp proteins may be involved in postinvasion events related to virulence. Since bacterial pathogens adapt to multiple environments during the course of infecting a host, we propose that Shigella evolved a mechanism to take advantage of a unique intracellular cue, which is mediated through MxiE, to express proteins when the organism reaches the eukaryotic cytosol.


2000 ◽  
Vol 182 (3) ◽  
pp. 771-781 ◽  
Author(s):  
Anthea K. Lee ◽  
Corrella S. Detweiler ◽  
Stanley Falkow

ABSTRACT Salmonella pathogenicity island 2 (SPI-2) encodes a putative, two-component regulatory system, SsrA-SsrB, which regulates a type III secretion system needed for replication inside macrophages and systemic infection in mice. The sensor and regulator homologs,ssrAB (spiR), and genes within the secretion system, including the structural gene ssaH, are transcribed after Salmonella enters host cells. We have studied the transcriptional regulation of ssrAB and the secretion system by using gfp fusions to the ssrA andssaH promoters. We found that early transcription ofssrA, after entry into macrophages, is most efficient in the presence of OmpR. An ompR mutant strain does not exhibit replication within cultured macrophages. Furthermore, footprint analysis shows that purified OmpR protein binds directly to thessrA promoter region. We also show that minimal medium, pH 4.5, induces SPI-2 gene expression in wild-type but notompR mutant strains. We conclude that the type III secretion system of SPI-2 is regulated by OmpR, which activates expression of ssrA soon after Salmonella enters the macrophage.


Sign in / Sign up

Export Citation Format

Share Document