scholarly journals Effect of Hook Subunit Concentration on Assembly and Control of Length of the Flagellar Hook ofSalmonella

1999 ◽  
Vol 181 (18) ◽  
pp. 5808-5813 ◽  
Author(s):  
Kazumasa Muramoto ◽  
Shigeru Makishima ◽  
Shin-Ichi Aizawa ◽  
Robert M. Macnab

ABSTRACT The flagellar hook of Salmonella is a filamentous polymer made up of subunits of the protein FlgE. Hook assembly is terminated when the length reaches about 55 nm. After our recent study of the effect of cellular levels of the hook length control protein FliK, we have now analyzed the effect of cellular levels of FlgE itself. When FlgE was overproduced in a wild-type strain, afliC (flagellin) mutant, or a fliD(hook-associated protein 2 [HAP2], filament capping protein) mutant, the hooks remained at the wild-type length. In a fliK (hook length control protein) mutant, which produces long hooks (polyhooks), the overproduction of FlgE resulted in extraordinarily long hooks (superpolyhooks). In a flgK (HAP1, first hook-filament junction protein) mutant or a flgL (HAP3, second hook-filament junction protein) mutant, the overproduction of FlgE also resulted in longer than normal hooks. Thus, at elevated hook protein levels not only FliK but also FlgK and FlgL are necessary for the proper termination of hook elongation. When FlgE was severely underproduced, basal bodies without hooks were often observed. However, those hooks that were seen were of wild-type length, demonstrating that FlgE underproduction decreases the probability of the initiation of hook assembly but not the extent of hook elongation.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yaqian Jin ◽  
Yaotian Fan ◽  
Hua Sun ◽  
Ying Zhang ◽  
Hongrong Wang

Ruminants may suffer from rumen acidosis when fed with high-concentrate diets due to the higher proliferation and overproduction of lactate by Streptococcus bovis. The catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase (ldh) and pyruvate formate-lyase (pfl) in S. bovis, but its role in response to different carbon concentrations remains unclear. To characterize the regulatory mechanisms of CcpA in S. bovis S1 at different levels of carbon, herein, we analyzed the transcriptomic and physiological characteristics of S. bovis S1 and its ccpA mutant strain grown in glucose-excess and glucose-limited conditions. A reduced growth rate and a shift in fermentation pattern from homofermentation to heterofermentation were observed under glucose-limited condition as compared to glucose-excess condition, in S. bovis S1. Additionally, the inactivation of ccpA significantly affected the growth and end metabolites in both conditions. For the glycolytic intermediate, fructose 1,6-bisphosphate (FBP), the concentration significantly reduced at lower glucose conditions; its concentration decreased significantly in the ccpA mutant strain. Transcriptomic results showed that about 46% of the total genes were differentially transcribed between the wild-type strain and ccpA mutant strain grown in glucose-excess conditions; while only 12% genes were differentially transcribed in glucose-limited conditions. Different glucose concentrations led to the differential expression of 38% genes in the wild-type strain, while only half of these were differentially expressed in the ccpA-knockout strain. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the substrate glucose concentration significantly affected the gene expression in histidine metabolism, nitrogen metabolism, and some carbohydrate metabolism pathways. The deletion of ccpA affected several genes involved in carbohydrate metabolism, such as glycolysis, pyruvate metabolism, fructose and mannose metabolism, as well as in fatty acid biosynthesis pathways in bacteria grown in glucose-excess conditions; this effect was attenuated under glucose-limited conditions. Overall, these findings provide new information on gene transcription and metabolic mechanisms associated with substrate glucose concentration and validate the important role of CcpA in the regulation of carbon metabolism in S. bovis S1 at differential glucose availability.


2017 ◽  
Vol 30 (4) ◽  
pp. 283-294 ◽  
Author(s):  
Suma Chakravarthy ◽  
Bronwyn G. Butcher ◽  
Yingyu Liu ◽  
Katherine D’Amico ◽  
Matthew Coster ◽  
...  

Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacterial pathology, it is largely unexplored in P. syringae. The Crc (catabolite repression control) protein is a putative RNA-binding protein that regulates carbon metabolism as well as a number of other factors in the pseudomonads. Here, we show that deletion of crc increased bacterial swarming motility and biofilm formation. The crc mutant showed reduced growth and symptoms in Arabidopsis and tomato when compared with the wild-type strain. We have evidence that the crc mutant shows delayed hypersensitive response (HR) when infiltrated into Nicotiana benthamiana and tobacco. Interestingly, the crc mutant was more susceptible to hydrogen peroxide, suggesting that, in planta, the mutant may be sensitive to reactive oxygen species generated during pathogen-associated molecular pattern–triggered immunity (PTI). Indeed, HR was further delayed when PTI-induced tissues were challenged with the crc mutant. The crc mutant did not elicit an altered PTI response in plants compared with the wild-type strain. We conclude that Crc plays an important role in growth and survival during infection.


1981 ◽  
Vol 51 (1) ◽  
pp. 241-253
Author(s):  
M. Jerka-Dziadosz

A ring consisting of microfilaments was found in the apical region of Tetrahymena thermophila wild-type strain B and janus mutant. This ring, about 0.4 micrometer wide and 0.2 micrometer thick, is located at the bases of the anterior, non-ciliated basal bodies of the apical ciliary couplets. The apical ring is made of fine filaments showing a banded pattern, the distance between bands depending on the fixation procedure and ranging from 30–200 nm. The bands are made of small beads fastened to the filaments. The microfilaments of the apical ring are attached to the bases of the basel bodies. No connection with the cell membrane was found. In dividing cells in the incipient furrow region of filamentous band originates from the epiplasmic fibrogranular meshwork. This contractile ring is about 0.4 micrometer wide and 0.8 micrometer thick. It is formed by circumferentially aligned microfibrils. During constriction the contractile ring remains associated with the epiplasmic layer, which in turn adheres to the inner alveolar membrane. The microfilaments of both the apical and the division-furrow rings have diameters ranging from about 3.8-7.I nm.


2001 ◽  
Vol 69 (3) ◽  
pp. 1924-1928 ◽  
Author(s):  
Gábor Nagy ◽  
Ulrich Dobrindt ◽  
Maren Kupfer ◽  
Levente Emödy ◽  
Helge Karch ◽  
...  

ABSTRACT The outer membrane protein ChuA responsible for hemin utilization has been recently identified in several pathogenic Escherichia coli strains. We report that the regulatory protein RfaH influences ChuA expression in the uropathogenic E. colistrain 536. In an rfaH mutant, the chuAtranscript as well as the ChuA protein levels were significantly decreased in comparison with those in the wild-type strain. Within thechuA gene, a consensus motif known as the JUMPStart (just upstream of many polysaccharide associated gene starts) sequence was found, which is shared by RfaH-affected operons. Furthermore, the presence of two different subclasses of thechuA determinant and their distribution in E. coli pathogroups are described.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nayeong Kim ◽  
Hyo Jeong Kim ◽  
Man Hwan Oh ◽  
Se Yeon Kim ◽  
Mi Hyun Kim ◽  
...  

Abstract Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Liu ◽  
Xue Bai ◽  
Yan Li ◽  
Haikun Zhang ◽  
Xiaoke Hu

Abstract Background A wide variety of bacterial adaptative responses to environmental conditions are mediated by signal transduction pathways. Two-component signal transduction systems are one of the predominant means used by bacteria to sense the signals of the host plant and adjust their interaction behaviour. A total of seven open reading frames have been identified as putative two-component response regulators in the gram-negative nitrogen-fixing bacteria Azorhizobium caulinodans ORS571. However, the biological functions of these response regulators in the symbiotic interactions between A. caulinodans ORS571 and the host plant Sesbania rostrata have not been elucidated to date. Results In this study, we identified and investigated a two-component response regulator, AcfR, with a phosphorylatable N-terminal REC (receiver) domain and a C-terminal HTH (helix-turn-helix) LuxR DNA-binding domain in A. caulinodans ORS571. Phylogenetic analysis showed that AcfR possessed close evolutionary relationships with NarL/FixJ family regulators. In addition, six histidine kinases containing HATPase_c and HisKA domains were predicted to interact with AcfR. Furthermore, the biological function of AcfR in free-living and symbiotic conditions was elucidated by comparing the wild-type strain and the ΔacfR mutant strain. In the free-living state, the cell motility behaviour and exopolysaccharide production of the ΔacfR mutant were significantly reduced compared to those of the wild-type strain. In the symbiotic state, the ΔacfR mutant showed a competitive nodule defect on the stems and roots of the host plant, suggesting that AcfR can provide A. caulinodans with an effective competitive ability for symbiotic nodulation. Conclusions Our results showed that AcfR, as a response regulator, regulates numerous phenotypes of A. caulinodans under the free-living conditions and in symbiosis with the host plant. The results of this study help to elucidate the involvement of a REC + HTH_LuxR two-component response regulator in the Rhizobium-host plant interaction.


2021 ◽  
Vol 9 (4) ◽  
pp. 676
Author(s):  
Ting-Yu Liu ◽  
Sheng-Hui Tsai ◽  
Jenn-Wei Chen ◽  
Yu-Ching Wang ◽  
Shiau-Ting Hu ◽  
...  

Mycobacterium abscessus is an opportunistic pathogen causing human diseases, especially in immunocompromised patients. M. abscessus strains with a rough morphotype are more virulent than those with a smooth morphotype. Morphotype switch may occur during a clinical infection. To investigate the genes involved in colony morphotype switching, we performed transposon mutagenesis in a rough clinical strain of M. abscessus. A morphotype switching mutant (smooth) named mab_3083c::Tn was obtained. This mutant was found to have a lower aggregative ability and a higher sliding motility than the wild type strain. However, its glycopeptidolipid (GPL) content remained the same as those of the wild type. Complementation of the mutant with a functional mab_3083c gene reverted its morphotype back to rough, indicating that mab_3083c is associated with colony morphology of M. abscessus. Bioinformatic analyses showed that mab_3083c has a 75.4% identity in amino acid sequence with the well-characterized ribonuclease J (RNase J) of M. smegmatis (RNase JMsmeg). Complementation of the mutant with the RNase J gene of M. smegmatis also switched its colony morphology from smooth back to rough. These results suggest that Mab_3083c is a homologue of RNase J and involved in regulating M. abscessus colony morphotype switching.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruiqi Wang ◽  
Kun Li ◽  
Jifang Yu ◽  
Jiaoyu Deng ◽  
Yaokai Chen

AbstractPrevious studies showed that mutation of folC caused decreased expression of the dihydropteroate synthase encoding gene folP2 in Mycobacterium tuberculosis (M. tuberculosis). We speculated that mutation of folC in M. tuberculosis might affect the susceptibility to sulfamethoxazole (SMX). To prove this, 53 clinical isolates with folC mutations were selected and two folC mutants (I43A, I43T) were constructed based on M. tuberculosis H37Ra. The results showed that 42 of the 53 clinical isolates (79.2%) and the two lab-constructed folC mutants were more sensitive to SMX. To probe the mechanism by which folC mutations make M. tuberculosis more sensitive to SMX, folP2 was deleted in H37Ra, and expression levels of folP2 were compared between H37Ra and the two folC mutants. Although deletion of folP2 resulted in increased susceptibility to SMX, no difference in folP2 expression was observed. Furthermore, production levels of para-aminobenzoic acid (pABA) were compared between the folC mutants and the wild-type strain, and results showed that folC mutation resulted in decreased production of pABA. Taken together, we show that folC mutation leads to decreased production of pABA in M. tuberculosis and thus affects its susceptibility to SMX, which broadens our understanding of mechanisms of susceptibilities to antifolates in this bacterium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Sign in / Sign up

Export Citation Format

Share Document