scholarly journals Effects of Combination of Different −10 Hexamers and Downstream Sequences on Stationary-Phase-Specific Sigma Factor ςS-Dependent Transcription in Pseudomonas putida

2000 ◽  
Vol 182 (23) ◽  
pp. 6707-6713 ◽  
Author(s):  
Eve-Ly Ojangu ◽  
Andres Tover ◽  
Riho Teras ◽  
Maia Kivisaar

ABSTRACT The main sigma factor activating gene expression, necessary in stationary phase and under stress conditions, is ςS. In contrast to other minor sigma factors, RNA polymerase holoenzyme containing ςS (EςS) recognizes a number of promoters which are also recognized by that containing ς70 (Eς70). We have previously shown that transposon Tn4652 can activate silent genes in starvingPseudomonas putida cells by creating fusion promoters during transposition. The sequence of the fusion promoters is similar to the ς70-specific promoter consensus. The −10 hexameric sequence and the sequence downstream from the −10 element differ among these promoters. We found that transcription from the fusion promoters is stationary phase specific. Based on in vivo experiments carried out with wild-type and rpoS-deficient mutant P. putida, the effect of ςS on transcription from the fusion promoters was established only in some of these promoters. The importance of the sequence of the −10 hexamer has been pointed out in several published papers, but there is no information about whether the sequences downstream from the −10 element can affect ςS-dependent transcription. Combination of the −10 hexameric sequences and downstream sequences of different fusion promoters revealed that ςS-specific transcription from these promoters is not determined by the −10 hexameric sequence only. The results obtained in this study indicate that the sequence of the −10 element influences ςS-specific transcription in concert with the sequence downstream from the −10 box.

2010 ◽  
Vol 192 (20) ◽  
pp. 5472-5479 ◽  
Author(s):  
Ruben C. Hartkoorn ◽  
Claudia Sala ◽  
Sophie J. Magnet ◽  
Jeffrey M. Chen ◽  
Florence Pojer ◽  
...  

ABSTRACT The tolerance of Mycobacterium tuberculosis to antituberculosis drugs is a major reason for the lengthy therapy needed to treat a tuberculosis infection. Rifampin is a potent inhibitor of RNA polymerase (RNAP) in vivo but has been shown to be less effective against stationary-phase bacteria. Sigma factor F is associated with bacteria entering stationary phase and has been proposed to impact rifampin activity. Here we investigate whether RNAP containing SigF is more resistant to rifampin inhibition in vitro and whether overexpression of sigF renders M. tuberculosis more tolerant to rifampin. Real-time and radiometric in vitro transcription assays revealed that rifampin equally inhibits transcription by RNAP containing sigma factors SigA and SigF, therefore ruling out the hypothesis that SigF may be responsible for increased resistance of the enzyme to rifampin in vitro. In addition, overexpression or deletion of sigF did not alter rifampin susceptibility in axenic cultures of M. tuberculosis, indicating that SigF does not affect rifampin tolerance in vivo.


2000 ◽  
Vol 182 (16) ◽  
pp. 4606-4616 ◽  
Author(s):  
Maureen J. Bibb ◽  
Virginie Molle ◽  
Mark J. Buttner

ABSTRACT Sporulation mutants of Streptomyces coelicolor appear white because they are defective in the synthesis of the gray polyketide spore pigment, and such white (whi) mutants have been used to define 13 sporulation loci. whiN, one of five new whi loci identified in a recent screen of NTG (N-methyl-N′-nitro-N-nitrosoguanidine)-inducedwhi strains (N. J. Ryding et al., J. Bacteriol. 181:5419–5425, 1999), was defined by two mutants, R112 and R650. R650 produced frequent spores that were longer than those of the wild type. In contrast, R112 produced long, straight, undifferentiated hyphae, although rare spore chains were observed, sometimes showing highly irregular septum placement. Subcloning and sequencing showed thatwhiN encodes a member of the extracytoplasmic function subfamily of RNA polymerase sigma factors and that the sigma factor has an unusual N-terminal extension of approximately 86 residues that is not present in other sigma factors. A constructed whiN null mutant failed to form aerial mycelium (the “bald” phenotype) and, as a consequence, whiN was renamed bldN. This observation was not totally unexpected because, on some media, the R112 point mutant produced substantially less aerial mycelium than its parent, M145. The bldN null mutant did not fit simply into the extracellular signaling cascade proposed for S. coelicolor bld mutants. Expression of bldN was analyzed during colony development in wild-type and aerial mycelium-deficientbld strains. bldN was transcribed from a single promoter, bldNp. bldN transcription was developmentally regulated, commencing approximately at the time of aerial mycelium formation, and depended on bldG and bldH, but not on bldA, bldB, bldC,bldF, bldK, or bldJ or onbldN itself. Transcription from the p1 promoter of the response-regulator gene bldM depended onbldN in vivo, and the bldMp1 promoter was shown to be a direct biochemical target for ςBldN holoenzyme in vitro.


2002 ◽  
Vol 184 (12) ◽  
pp. 3167-3175 ◽  
Author(s):  
K. Rajkumari ◽  
J. Gowrishankar

ABSTRACT RpoS (σS) in Escherichia coli is a stationary-phase-specific primary sigma factor of RNA polymerase which is 330 amino acids long and belongs to the eubacterial σ70 family of proteins. Conserved domain 1.1 at the N-terminal end of σ70 has been shown to be essential for RNA polymerase function, and its deletion has been shown to result in a dominant-lethal phenotype. We now report that a σS variant with a deletion of its N-terminal 50 amino acids (σSΔ1-50), when expressed in vivo either from a chromosomal rpoS::IS10 allele (in rho mutant strains) or from a plasmid-borne arabinose-inducible promoter, is as proficient as the wild type in directing transcription from the proU P1 promoter; at three other σS-dependent promoters that were tested (osmY, katE, and csiD), the truncated protein exhibited a three- to sevenfold reduced range of activities. Catabolite repression at the csiD promoter (which requires both σS and cyclic AMP [cAMP]-cAMP receptor protein for its activity) was also preserved in the strain expressing σSΔ1-50. The intracellular content of σSΔ1-50 was regulated by culture variables such as growth phase, osmolarity, and temperature in the same manner as that described earlier for σS, even when the truncated protein was expressed from a template that possessed neither the transcriptional nor the translational control elements of wild-type rpoS. Our results indicate that, unlike that in σ70, the N-terminal domain in σS may not be essential for the protein to function as a sigma factor in vivo. Furthermore, our results suggest that the induction of σS-specific promoters in stationary phase and during growth under conditions of high osmolarity or low temperature is mediated primarily through the regulation of σS protein degradation.


2000 ◽  
Vol 68 (10) ◽  
pp. 5575-5580 ◽  
Author(s):  
Ping Chen ◽  
Rafael E. Ruiz ◽  
Qing Li ◽  
Richard F. Silver ◽  
William R. Bishai

ABSTRACT The alternate RNA polymerase sigma factor gene, sigF, which is expressed in stationary phase and under stress conditions in vitro, has been deleted in the virulent CDC1551 strain ofMycobacterium tuberculosis. The growth rate of the ΔsigF mutant was identical to that of the isogenic wild-type strain in exponential phase, although in stationary phase the mutant achieved a higher density than the wild type. The mutant showed increased susceptibility to rifampin and rifapentine. Additionally, the ΔsigF mutant displayed diminished uptake of chenodeoxycholate, and this effect was reversed by complementation with a wild-type sigF gene. No differences in short-term intracellular growth between mutant and wild-type organisms within human monocytes were observed. Similarly, the organisms did not differ in their susceptibilities to lymphocyte-mediated inhibition of intracellular growth. However, mice infected with the ΔsigF mutant showed a median time to death of 246 days compared with 161 days for wild-type strain-infected animals (P < 0.001). These data indicate that M. tuberculosis sigF is a nonessential alternate sigma factor both in axenic culture and for survival in macrophages in vitro. While the ΔsigF mutant produces a lethal infection of mice, it is less virulent than its wild-type counterpart by time-to-death analysis.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4803
Author(s):  
Andrea Irías-Mata ◽  
Nadine Sus ◽  
Maria-Lena Hug ◽  
Marco Müller ◽  
Walter Vetter ◽  
...  

Tocomonoenols are vitamin E derivatives present in foods with a single double bond at carbon 11’ in the sidechain. The α-tocopherol transfer protein (TTP) is required for the maintenance of normal α-tocopherol (αT) concentrations. Its role in the tissue distribution of α-11′-tocomonoenol (αT1) is unknown. We investigated the tissue distribution of αT1 and αT in wild-type (TTP+/+) and TTP knockout (TTP−/−) mice fed diets with either αT or αT1 for two weeks. αT1 was only found in blood, not tissues. αT concentrations in TTP+/+ mice were in the order of adipose tissue > brain > heart > spleen > lungs > kidneys > small intestine > liver. Loss of TTP function depleted αT in all tissues. αT1, contrary to αT, was still present in the blood of TTP−/− mice (16% of αT1 in TTP+/+). Autoclaving and storage at room temperature reduced αT and αT1 in experimental diets. In conclusion, αT1 is bioavailable, reaches the blood in mice, and may not entirely depend on TTP function for secretion into the systemic circulation. However, due to instability of the test compounds in the experimental diets, further in vivo experiments are required to clarify the role of TTP in αT1 secretion. Future research should consider compound stability during autoclaving of rodent feed.


2001 ◽  
Vol 183 (11) ◽  
pp. 3391-3398 ◽  
Author(s):  
Vicente Monedero ◽  
Oscar P. Kuipers ◽  
Emmanuel Jamet ◽  
Josef Deutscher

ABSTRACT In most low-G+C gram-positive bacteria, the phosphoryl carrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) becomes phosphorylated at Ser-46. This ATP-dependent reaction is catalyzed by the bifunctional HPr kinase/P-Ser-HPr phosphatase. We found that serine-phosphorylated HPr (P-Ser-HPr) of Lactococcus lactis participates not only in carbon catabolite repression of an operon encoding a β-glucoside-specific EII and a 6-P-β-glucosidase but also in inducer exclusion of the non-PTS carbohydrates maltose and ribose. In a wild-type strain, transport of these non-PTS carbohydrates is strongly inhibited by the presence of glucose, whereas in a ptsH1 mutant, in which Ser-46 of HPr is replaced with an alanine, glucose had lost its inhibitory effect. In vitro experiments carried out with L. lactis vesicles had suggested that P-Ser-HPr is also implicated in inducer expulsion of nonmetabolizable homologues of PTS sugars, such as methylβ-d-thiogalactoside (TMG) and 2-deoxy-d-glucose (2-DG). In vivo experiments with theptsH1 mutant established that P-Ser-HPr is not necessary for inducer expulsion. Glucose-activated 2-DG expulsion occurred at similar rates in wild-type and ptsH1 mutant strains, whereas TMG expulsion was slowed in the ptsH1 mutant. It therefore seems that P-Ser-HPr is not essential for inducer expulsion but that in certain cases it can play an indirect role in this regulatory process.


2005 ◽  
Vol 187 (20) ◽  
pp. 7062-7071 ◽  
Author(s):  
Mi-Young Hahn ◽  
Sahadevan Raman ◽  
Mauricio Anaya ◽  
Robert N. Husson

ABSTRACT Mycobacterium tuberculosis sigL encodes an extracytoplasmic function (ECF) sigma factor and is adjacent to a gene for a membrane protein (Rv0736) that contains a conserved HXXXCXXC sequence. This motif is found in anti-sigma factors that regulate several ECF sigma factors, including those that control oxidative stress responses. In this work, SigL and Rv0736 were found to be cotranscribed, and the intracellular domain of Rv0736 was shown to interact specifically with SigL, suggesting that Rv0736 may encode an anti-sigma factor of SigL. An M. tuberculosis sigL mutant was not more susceptible than the parental strain to several oxidative and nitrosative stresses, and sigL expression was not increased in response to these stresses. In vivo, sigL is expressed from a weak SigL-independent promoter and also from a second SigL-dependent promoter. To identify SigL-regulated genes, sigL was overexpressed and microarray analysis of global transcription was performed. Four small operons, sigL (Rv0735)-Rv0736, mpt53 (Rv2878c)-Rv2877c, pks10 (Rv1660)-pks7 (Rv1661), and Rv1139c-Rv1138c, were among the most highly upregulated genes in the sigL-overexpressing strain. SigL-dependent transcription start sites of these operons were mapped, and the consensus promoter sequences TGAACC in the −35 region and CGTgtc in the −10 region were identified. In vitro, purified SigL specifically initiated transcription from the promoters of sigL, mpt53, and pks10. Additional genes, including four PE_PGRS genes, appear to be regulated indirectly by SigL. In an in vivo murine infection model, the sigL mutant strain showed marked attenuation, indicating that the sigL regulon is important in M. tuberculosis pathogenesis.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3694-3700 ◽  
Author(s):  
Mary Lynn Nierodzik ◽  
Kui Chen ◽  
Kenichi Takeshita ◽  
Jian-Jun Li ◽  
Yao-Qi Huang ◽  
...  

Thrombin-treated tumor cells induce a metastatic phenotype in experimental pulmonary murine metastasis. Thrombin binds to a unique protease-activated receptor (PAR-1) that requires N-terminal proteolytic cleavage for activation by its tethered end. A 14-mer thrombin receptor activation peptide (TRAP) of the tethered end induces the same cellular changes as thrombin. Four murine tumor cells (Lewis lung, CT26 colon CA, B16F10 melanoma, and CCL163 fibroblasts) contain PAR-1, as detected by reverse transcriptase-polymerase chain reaction (RT-PCR). B16F10 cells did not contain the two other thrombin receptors, PAR-3 and glycoprotein Ib. TRAP-treated B16F10 tumor cells enhance pulmonary metastasis 41- to 48-fold (n = 17). Thrombin-treated B16F10 cells transfected with full-length murine PAR-1 sense cDNA (S6, S7, S14, and S22) enhanced their adhesion to fibronectin 1.5- to 2.4-fold (n = 5, P < .04), whereas thrombin-treated wild-type cells do not. S6 (adhesion index, 1.5-fold) and S14 (index, 2.4-fold) when examined by RT-PCR and Northern analysis showed minimal expression of PAR-1 for S6 over wild-type and considerable expression for S14. Immunohistochemistry showed greater expression of PAR-1 for S14 compared with wild-type or empty-plasmid transfected cells. In vivo experiments with the thrombin-treated S14 transfectant showed a fivefold to sixfold increase in metastases compared with empty-plasmid transfected thrombin-treated naive cells or S6 cells (n = 20, P = .0001 to .02). Antisense had no effect on thrombin-stimulated tumor mass. Thus, PAR-1 ligation and expression enhances and regulates tumor metastasis.


2001 ◽  
Vol 47 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Anne J Anderson ◽  
Charles D Miller

Peracetic acid is used as a sterilant in several industrial settings. Cells of a plant-colonizing bacterium, Pseudomonas putida in liquid suspension, were more sensitive to killing by peracetic acid when they lacked a major catalase activity, catalase A. Low doses of peracetic acid induced promoter activity of the gene encoding catalase A and increased total catalase specific activity in cell extracts. Microbes present in native agricultural soils rapidly degraded the active oxygen species present in peracetic acid. The simultaneous release of oxygen was consistent with a role for catalase in degrading the hydrogen peroxide that is part of the peracetic acid-equilibrium mixture. Amendment of sterilized soils with wild-type P. putida restored the rate of degradation of peracetic acid to a higher level than was observed in the soils amended with the catalase A-deficient mutant. The association of the bacteria with the plant roots resulted in protection of the wild-type as well as the catalase-deficient mutant from killing by peracetic acid. No differential recovery of the wild-type and catalase A mutant of P. putida was observed from roots after the growth matrix containing the plants was flushed with peracetic acid.Key words: Pseudomonas putida (Pp), activated oxygen species (AOS), hydrogen peroxide, luciferase, colonization.


2002 ◽  
Vol 22 (9) ◽  
pp. 3046-3052 ◽  
Author(s):  
Karim Nayernia ◽  
Ibrahim M. Adham ◽  
Elke Burkhardt-Göttges ◽  
Jürgen Neesen ◽  
Mandy Rieche ◽  
...  

ABSTRACT The sperm mitochondria-associated cysteine-rich protein (SMCP) is a cysteine- and proline-rich structural protein that is closely associated with the keratinous capsules of sperm mitochondria in the mitochondrial sheath surrounding the outer dense fibers and axoneme. To investigate the function of SMCP, we generated mice with a targeted disruption of the gene Smcp by homologous recombination. Homozygous mutant males on a mixed genetic background (C57BL/6J × 129/Sv) are fully fertile, while they are infertile on the 129/Sv background, although spermatogenesis and mating are normal. Homozygous Smcp−/− female mice are fertile on both genetic backgrounds. Electron microscopical examination demonstrated normal structures of sperm head, mitochondria, and tail. In vivo experiments with sperm of Smcp−/− 129/Sv mice revealed that the migration of spermatozoa from the uterus into the oviduct is reduced. This result is supported by the observation that sperm motility as determined by the computer-assisted semen analysis system (CASA) is significantly affected as compared to wild-type spermatozoa. In vitro fertilization assays showed that Smcp-deficient spermatozoa are able to bind to the oocyte but that the number of fertilized eggs is reduced by more than threefold relative to the wild-type control. However, removal of the zona pellucida resulted in an unaffected sperm-egg fusion which was monitored by the presence of pronuclei and generation of blastocyts. These results indicate that the infertility of the male Smcp−/− mice on the 129/Sv background is due to reduced motility of the spermatozoa and decreased capability of the spermatozoa to penetrate oocytes.


Sign in / Sign up

Export Citation Format

Share Document