scholarly journals Charged Amino Acids Conserved in the Aromatic Acid/H+ Symporter Family of Permeases Are Required for 4-Hydroxybenzoate Transport by PcaK from Pseudomonas putida

2002 ◽  
Vol 184 (5) ◽  
pp. 1444-1448 ◽  
Author(s):  
Jayna L. Ditty ◽  
Caroline S. Harwood

ABSTRACT Charged amino acids in the predicted transmembrane portion of PcaK, a permease from Pseudomonas putida that transports 4-hydroxybenzoate (4-HBA), were required for 4-HBA transport, and they were also required for P. putida to have a chemotactic response to 4-HBA. An essential amino acid motif (DGXD) containing aspartate residues is located in the first transmembrane segment of PcaK and is conserved in the aromatic acid/H+ symporter family of the major facilitator superfamily of transporters.

1999 ◽  
Vol 181 (16) ◽  
pp. 5068-5074 ◽  
Author(s):  
Jayna L. Ditty ◽  
Caroline S. Harwood

ABSTRACT Chemotaxis to the aromatic acid 4-hydroxybenzoate (4-HBA) byPseudomonas putida is mediated by PcaK, a membrane-bound protein that also functions as a 4-HBA transporter. PcaK belongs to the major facilitator superfamily (MFS) of transport proteins, none of which have so far been implicated in chemotaxis. Work with two well-studied MFS transporters, LacY (the lactose permease) and TetA (a tetracycline efflux protein), has revealed two stretches of amino acids located between the second and third (2-3 loop) and the eighth and ninth (8-9 loop) transmembrane regions that are required for substrate transport. These sequences are conserved among most MFS transporters, including PcaK. To determine if PcaK has functional requirements similar to those of other MFS transport proteins and to analyze the relationship between the transport and chemotaxis functions of PcaK, we generated strains with mutations in amino acid residues located in the 2-3 and 8-9 loops of PcaK. The mutant proteins were analyzed in 4-HBA transport and chemotaxis assays. Cells expressing mutant PcaK proteins had a range of phenotypes. Some transported at wild-type levels, while others were partially or completely defective in 4-HBA transport. An aspartate residue in the 8-9 loop that has no counterpart in LacY and TetA, but is conserved among members of the aromatic acid/H+ symporter family of the MFS, was found to be critical for 4-HBA transport. These results indicate that conserved amino acids in the 2-3 and 8-9 loops of PcaK are required for 4-HBA transport. Amino acid changes that decreased 4-HBA transport also caused a decrease in 4-HBA chemotaxis, but the effect on chemotaxis was sometimes slightly more severe. The requirement of PcaK for both 4-HBA transport and chemotaxis demonstrates that P. putida has a chemoreceptor that differs from the classical chemoreceptors described for Escherichia coli and Salmonella typhimurium.


2016 ◽  
Vol 30 (7) ◽  
pp. 796-808 ◽  
Author(s):  
Jörg Johannes ◽  
Doreen Braun ◽  
Anita Kinne ◽  
Daniel Rathmann ◽  
Josef Köhrle ◽  
...  

Monocarboxylate transporters (MCTs) belong to the SLC16 family within the major facilitator superfamily of transmembrane transporters. MCT8 is a thyroid hormone transporter mutated in the Allan-Herndon-Dudley syndrome, a severe psychomotor retardation syndrome. MCT10 is closely related to MCT8 and is known as T-type amino acid transporter. Both transporters mediate T3 transport, but although MCT8 also transports rT3 and T4, these compounds are not efficiently transported by MCT10, which, in contrast, transports aromatic amino acids. Based on the 58% amino acid identity within the transmembrane regions among MCT8 and MCT10, we reasoned that substrate specificity may be primarily determined by a small number of amino acid differences between MCT8 and MCT10 along the substrate translocation channel. Inspecting the homology model of MCT8 and a structure-guided alignment between both proteins, we selected 8 amino acid positions and prepared chimeric MCT10 proteins with selected amino acids changed to the corresponding amino acids in MCT8. The MCT10 mutant harboring 8 amino acid substitutions was stably expressed in Madin-Darby canine kidney 1 cells and found to exhibit T4 transport activity. We then successively reduced the number of amino acid substitutions and eventually identified a minimal set of 2–3 amino acid exchanges which were sufficient to allow T4 transport. The resulting MCT10 chimeras exhibited KM values for T4 similar to MCT8 but transported T4 at a slower rate. The acquisition of T4 transport by MCT10 was associated with complete loss of the capacity to transport Phe, when Tyr184 was mutated to Phe.


2000 ◽  
Vol 182 (6) ◽  
pp. 1492-1498 ◽  
Author(s):  
Samantha L. Ginn ◽  
Melissa H. Brown ◽  
Ronald A. Skurray

ABSTRACT Conserved motif C, identified within members of the major facilitator superfamily (MFS) of transport proteins that mediate drug export, was examined in the tetracycline resistance efflux protein TetA(K) from Staphylococcus aureus; motif C is contained within transmembrane segment 5. Using site-directed mutagenesis, the importance of the conserved glycine (G151, G155, G159, and G160) and proline (P156) residues within this motif was investigated. Over 40 individual amino acid replacements were introduced; however, only alanine and serine substitutions for glycine at G151, G155, and G160 were found to retain significant levels of tetracycline resistance and transport activity in cells expressing mutant proteins. Notably, P156 and G159 appear to be crucial, as amino acid replacements at these positions either significantly reduced or abolished tetracycline/H+ activity. The highly conserved nature of motif C and its distribution throughout drug exporters imply that the residues of motif C play a similar role in all MFS proteins that function as antiporters.


Author(s):  
Florian Javelle ◽  
Descartes Li ◽  
Philipp Zimmer ◽  
Sheri L. Johnson

Abstract. Emotion-related impulsivity, defined as the tendency to say or do things that one later regret during periods of heightened emotion, has been tied to a broad range of psychopathologies. Previous work has suggested that emotion-related impulsivity is tied to an impaired function of the serotonergic system. Central serotonin synthesis relies on the intake of the essential amino acid, tryptophan and its ability to pass through the blood brain barrier. Objective: The aim of this study was to determine the association between emotion-related impulsivity and tryptophan intake. Methods: Undergraduate participants (N = 25, 16 women, 9 men) completed a self-rated measure of impulsivity (Three Factor Impulsivity Index, TFI) and daily logs of their food intake and exercise. These data were coded using the software NutriNote to evaluate intakes of tryptophan, large neutral amino acids, vitamins B6/B12, and exercise. Results: Correlational analyses indicated that higher tryptophan intake was associated with significantly lower scores on two out of three subscales of the TFI, Pervasive Influence of Feelings scores r =  –.502, p < . 010, and (lack-of) Follow-Through scores, r =  –.407, p < . 050. Conclusion: Findings provide further evidence that emotion-related impulsivity is correlated to serotonergic indices, even when considering only food habits. It also suggests the need for more research on whether tryptophan supplements might be beneficial for impulsive persons suffering from a psychological disorder.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 476
Author(s):  
Joachim Kloehn ◽  
Matteo Lunghi ◽  
Emmanuel Varesio ◽  
David Dubois ◽  
Dominique Soldati-Favre

Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii—previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite’s metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


2021 ◽  
pp. 1-8
Author(s):  
Adeyeye EI ◽  
◽  
Idowu OT ◽  

This article reports the amino acid composition of the Nigerian local cheese called ‘wara’. ‘Wara’ is made by boiling cow milk with some added coagulant to cuddle the milk protein resulting in coagulated milk protein and whey. ‘Wara’ used to be an excellent source of nutrients such as proteins, fats, minerals and vitamins. Samples were purchased in Ado-Ekiti, Nigeria. Amino acid values were high (g/100g crude protein) in Leu, Asp, Glu, Pro, Phe, Arg with total value of 97.7. The quality parameters of the amino acids were: TEAA (42.6g/100g and 43.6%) whereas TNEAA (55.1g/100g and 56.4%); TArAA (12.8g/100g and 13.1%); TBAA (14.2g/100g and 14.5%); TSAA (3.10g/100g and 3.17%); %Cys in TSAA (51.4); Leu/Ile ratio (1.74); P-PER1 (2.65); P-PER2 (2.48); P-PER3 (2.41); EAAI1 (soybean standard) (1.29) and EAAI2 (egg standard) (99.9); BV (97.2) and Lys/Trp ratio (3.62). The statistical analysis of TEAA/TNEAA at r=0.01 was not significantly different. On the amino acid scores, Met was limiting (0.459) at egg comparison, Lys was limiting at both FAO/WHO [24] and preschool EAA requirements with respective values of 0.966 and 0.97. Estimates of essential amino acid requirements at ages 10-12 years (mg/kg/day) showed the ‘wara’ sample to be better than the standard by 3.72-330% with Lys (3.72%) being least better and Trp (330%) being most. The results showed that ‘wara’ is protein-condensed which can be eaten as raw cheese, flavoured snack, sandwich filling or fried cake.


Food systems ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 4-11
Author(s):  
S. V. Zverev ◽  
V. I. Karpov ◽  
M. A. Nikitina

The paper emphasizes the importance of not only the quantitative but also qualitative composition of protein in nutrition. The authors propose protein classification into three main groups according to the concept of reference (ideal) protein. A mathematical model is examined to solve the task of rational mixture production upon the given profile of reference protein. Two variants of the criterion for formation of optimal composition are described. One of them presents the classical sum of squares of the residual for essential amino acid scores and 1. The second also presents the sum of squares of the residual for essential amino acid scores and 1 but with regard to only those amino acids, which scores are less than 1. The minima of these criteria at the set of variants for the content of ingredients are taken as targeted functions. The algorithm and the program of calculation were realized in the program environment Builder C++ 6.0. The macro flowchart of the algorithm is presented and detailed description of each block is given. The program interface before and after the start of the calculation module is shown. The main windows and interpretation of the presented data are described. An example of realization of the proposed mathematical apparatus when calculating a food model composition is given. Plant components (white kidney beans, flax, peanut, grit “Poltavskaya», dry red carrot) were used as an object of the research. Most plant proteins were incomplete. It is possible to regulate the chemical composition including correction of a protein profile by combination of plant raw materials. Analysis of alternative variants demonstrated that minimum essential amino acid score in the first composition was 0.79 (by the first criterion), in the second 1.0 (by the second criterion); the reference protein proportion in the mixture was 10.8 and 13.5, respectively, according to the first and second criterion. The comparative results by other quality indicators for protein in the mixture are also presented: the coefficient of amino acid score difference (CAASD), biological value (BV), coefficient of utility, essential amino acids index (IEAA).


Sign in / Sign up

Export Citation Format

Share Document