scholarly journals Bacillus subtilis ResD Induces Expression of the Potential Regulatory Genes yclJK upon Oxygen Limitation

2004 ◽  
Vol 186 (19) ◽  
pp. 6477-6484 ◽  
Author(s):  
Elisabeth Härtig ◽  
Hao Geng ◽  
Anja Hartmann ◽  
Angela Hubacek ◽  
Richard Münch ◽  
...  

ABSTRACT Transcription of the yclJK operon, which encodes a potential two-component regulatory system, is activated in response to oxygen limitation in Bacillus subtilis. Northern blot analysis and assays of yclJ-lacZ reporter gene fusion activity revealed that the anaerobic induction is dependent on another two-component signal transduction system encoded by resDE. ResDE was previously shown to be required for the induction of anaerobic energy metabolism. Electrophoretic mobility shift assays and DNase I footprinting experiments showed that the response regulator ResD binds specifically to the yclJK regulatory region upstream of the transcriptional start site. In vitro transcription experiments demonstrated that ResD is sufficient to activate yclJ transcription. The phosphorylation of ResD by its sensor kinase, ResE, highly stimulates its activity as a transcriptional activator. Multiple nucleotide substitutions in the ResD binding regions of the yclJ promoter abolished ResD binding in vitro and prevented the anaerobic induction of yclJK in vivo. A weight matrix for the ResD binding site was defined by a bioinformatic approach. The results obtained suggest the existence of a new branch of the complex regulatory system employed for the adaptation of B. subtilis to anaerobic growth conditions.

2006 ◽  
Vol 189 (5) ◽  
pp. 1736-1744 ◽  
Author(s):  
Montira Leelakriangsak ◽  
Kazuo Kobayashi ◽  
Peter Zuber

ABSTRACT The spx gene encodes an RNA polymerase-binding protein that exerts negative and positive transcriptional control in response to oxidative stress in Bacillus subtilis. It resides in the yjbC-spx operon and is transcribed from at least five promoters located in the yjbC regulatory region or in the yjbC-spx intergenic region. Induction of spx transcription in response to treatment with the thiol-specific oxidant diamide is the result of transcription initiation at the P3 promoter located upstream of the spx coding sequence. Previous studies conducted elsewhere and analyses of transcription factor mutants using transformation array technology have uncovered two transcriptional repressors, PerR and YodB, that target the cis-acting negative control elements of the P3 promoter. Expression of an spx-bgaB fusion carrying the P3 promoter is elevated in a yodB or perR mutant, and an additive increase in expression was observed in a yodB perR double mutant. Primer extension analysis of spx RNA shows the same additive increase in P3 transcript levels in yodB perR mutant cells. Purified YodB and PerR repress spx transcription in vitro when wild-type spx P3 promoter DNA was used as a template. Point mutations at positions within the P3 promoter relieved YodB-dependent repression, while a point mutation at position +24 reduced PerR repression. DNase I footprinting analysis showed that YodB protects a region that includes the P3 −10 and −35 regions, while PerR binds to a region downstream of the P3 transcriptional start site. The binding of both repressors is impaired by the treatment of footprinting reactions with diamide or hydrogen peroxide. The study has uncovered a mechanism of dual negative control that relates to the oxidative stress response of gram-positive bacteria.


2002 ◽  
Vol 184 (20) ◽  
pp. 5661-5671 ◽  
Author(s):  
Elise Darmon ◽  
David Noone ◽  
Anne Masson ◽  
Sierd Bron ◽  
Oscar P. Kuipers ◽  
...  

ABSTRACT Bacteria need dedicated systems that allow appropriate adaptation to the perpetual changes in their environments. In Bacillus subtilis, two HtrA-like proteases, HtrA and HtrB, play critical roles in the cellular response to secretion and heat stresses. Transcription of these genes is induced by the high-level production of a secreted protein or by a temperature upshift. The CssR-CssS two-component regulatory system plays an essential role in this transcriptional activation. Transcription of the cssRS operon is autoregulated and can be induced by secretion stress, by the absence of either HtrA or HtrB, and by heat stress in a HtrA null mutant strain. Two start sites are used for cssRS transcription, only one of which is responsive to heat and secretion stress. The divergently transcribed htrB and cssRS genes share a regulatory region through which their secretion and heat stress-induced expression is linked. This study shows that CssRS-regulated genes represent a novel class of heat-inducible genes, which is referred to as class V and currently includes two genes: htrA and htrB.


2004 ◽  
Vol 186 (6) ◽  
pp. 1694-1704 ◽  
Author(s):  
Avanti Baruah ◽  
Brett Lindsey ◽  
Yi Zhu ◽  
Michiko M. Nakano

ABSTRACT The Bacillus subtilis ResD-ResE two-component regulatory system activates genes involved in nitrate respiration in response to oxygen limitation or nitric oxide (NO). The sensor kinase ResE activates the response regulator ResD through phosphorylation, which then binds to the regulatory region of genes involved in anaerobiosis to activate their transcription. ResE is composed of an N-terminal signal input domain and a C-terminal catalytic domain. The N-terminal domain contains two transmembrane subdomains and a large extracytoplasmic loop. It also has a cytoplasmic PAS subdomain between the HAMP linker and C-terminal kinase domain. In an attempt to identify the signal-sensing subdomain of ResE, a series of deletions and amino acid substitutions were generated in the N-terminal domain. The results indicated that cytoplasmic ResE lacking the transmembrane segments and the extracytoplasmic loop retains the ability to sense oxygen limitation and NO, which leads to transcriptional activation of ResDE-dependent genes. This activity was eliminated by the deletion of the PAS subdomain, demonstrating that the PAS subdomain participates in signal reception. The study also raised the possibility that the extracytoplasmic region may serve as a second signal-sensing subdomain. This suggests that the extracytoplasmic region could contribute to amplification of ResE activity leading to the robust activation of genes required for anaerobic metabolism in B. subtilis.


2001 ◽  
Vol 183 (23) ◽  
pp. 6815-6821 ◽  
Author(s):  
Marco Marino ◽  
Hugo Cruz Ramos ◽  
Tamara Hoffmann ◽  
Philippe Glaser ◽  
Dieter Jahn

ABSTRACT Bacillus subtilis grows under anaerobic conditions utilizing nitrate ammonification and various fermentative processes. The two-component regulatory system ResDE and the redox regulator Fnr are the currently known parts of the regulatory system for anaerobic adaptation. Mutation of the open reading frame ywiDlocated upstream of the respiratory nitrate reductase operonnarGHJI resulted in elimination of the contribution of nitrite dissimilation to anaerobic nitrate respiratory growth. Significantly reduced nitrite reductase (NasDE) activity was detected, while respiratory nitrate reductase activity was unchanged. Anaerobic induction of nasDE expression was found to be significantly dependent on intact ywiD, while anaerobicnarGHJI expression was ywiD independent. Anaerobic transcription of hmp, encoding a flavohemoglobin-like protein, and of the fermentative operonslctEP and alsSD, responsible for lactate and acetoin formation, was partially dependent on ywiD. Expression of pta, encoding phosphotransacetylase involved in fermentative acetate formation, was not influenced byywiD. Transcription of the ywiD gene was anaerobically induced by the redox regulator Fnr via the conserved Fnr-box (TGTGA-6N-TCACT) centered 40.5 bp upstream of the transcriptional start site. Anaerobic induction of ywiDby resDE was found to be indirect viaresDE-dependent activation of fnr. TheywiD gene is subject to autorepression and nitrite repression. These results suggest a ResDE → Fnr → YwiD regulatory cascade for the modulation of genes involved in the anaerobic metabolism of B. subtilis. Therefore,ywiD was renamed arfM for anaerobic respiration and fermentation modulator.


2009 ◽  
Vol 192 (3) ◽  
pp. 746-754 ◽  
Author(s):  
Martijn Bekker ◽  
Svetlana Alexeeva ◽  
Wouter Laan ◽  
Gary Sawers ◽  
Joost Teixeira de Mattos ◽  
...  

ABSTRACT ArcBA is a two-component regulatory system of Escherichia coli involved in sensing oxygen availability and the concomitant transcriptional regulation of oxidative and fermentative catabolism. Based on in vitro data, it has been postulated that the redox state of the ubiquinone pool is the determinant for ArcB kinase activity. Here we report on the in vivo regulation of ArcB activation, as determined using a lacZ reporter specifically responsive to phosphorylated ArcA. Our results indicate that upon deletion of a ubiquinone biosynthetic enzyme, regulation of ArcB in the anaerobic-aerobic transition is not affected. In contrast, interference with menaquinone biosynthesis leads to inactivation of ArcB during anaerobic growth; this phenotype is fully rescued by addition of a menaquinone precursor. This clearly demonstrates that the menaquinones play a major role in ArcB activation. ArcB shows a complex pattern of regulation when E. coli is titrated through the entire aerobiosis range; ArcB is activated under anaerobic and subaerobic conditions and is much less active under fully aerobic and microaerobic conditions. Furthermore, there is no correlation between ArcB activation and the redox state of the ubiquinone pool, but there is a restricted correlation between the total cellular ubiquinone content and ArcB activity due to the considerable increase in the size of the ubiquinone pool with increasing degrees of aerobiosis. These results lead to the working hypothesis that the in vivo activity of ArcB in E. coli is modulated by the redox state of the menaquinone pool and that the ubiquinone/ubiquinol ratio in vivo surely is not the only determinant of ArcB activity.


2015 ◽  
Vol 198 (5) ◽  
pp. 830-845 ◽  
Author(s):  
Kazutake Hirooka ◽  
Yusuke Kodoi ◽  
Takenori Satomura ◽  
Yasutaro Fujita

ABSTRACTTheBacillus subtilisrhaEWRBMA(formerlyyuxG-yulBCDE) operon consists of four genes encoding enzymes forl-rhamnose catabolism and therhaRgene encoding a DeoR-type transcriptional regulator. DNase I footprinting analysis showed that the RhaR protein specifically binds to the regulatory region upstream of therhaEWgene, in which two imperfect direct repeats are included. Gel retardation analysis revealed that the direct repeat farther upstream is essential for the high-affinity binding of RhaR and that the DNA binding of RhaR was effectively inhibited byl-rhamnulose-1-phosphate, an intermediate ofl-rhamnose catabolism. Moreover, it was demonstrated that the CcpA/P-Ser-HPr complex, primarily governing the carbon catabolite control inB. subtilis, binds to the catabolite-responsive element, which overlaps the RhaR binding site.In vivoanalysis of therhaEWpromoter-lacZfusion in the background ofccpAdeletion showed that thel-rhamnose-responsive induction of therhaEWpromoter was negated by the disruption ofrhaAorrhaBbut notrhaEWorrhaM, whereasrhaRdisruption resulted in constitutiverhaEWpromoter activity. Thesein vitroandin vivoresults clearly indicate that RhaR represses the operon by binding to the operator site, which is detached byl-rhamnulose-1-phosphate formed froml-rhamnose through a sequence of isomerization by RhaA and phosphorylation by RhaB, leading to the derepression of the operon. In addition, thelacZreporter analysis using the strains with or without theccpAdeletion under the background ofrhaRdisruption supported the involvement of CcpA in the carbon catabolite repression of the operon.IMPORTANCESincel-rhamnose is a component of various plant-derived compounds, it is a potential carbon source for plant-associating bacteria. Moreover, it is suggested thatl-rhamnose catabolism plays a significant role in some bacteria-plant interactions, e.g., invasion of plant pathogens and nodulation of rhizobia. Despite the physiological importance ofl-rhamnose catabolism for various bacterial species, the transcriptional regulation of the relevant genes has been poorly understood, except for the regulatory system ofEscherichia coli. In this study, we show that, inBacillus subtilis, one of the plant growth-promoting rhizobacteria, therhaEWRBMAoperon forl-rhamnose catabolism is controlled by RhaR and CcpA. This regulatory system can be another standard model for better understanding the regulatory mechanisms ofl-rhamnose catabolism in other bacterial species.


Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2331-2343 ◽  
Author(s):  
Thierry Doan ◽  
Pascale Servant ◽  
Shigeo Tojo ◽  
Hirotake Yamaguchi ◽  
Guillaume Lerondel ◽  
...  

A transcriptome comparison of a wild-type Bacillus subtilis strain growing under glycolytic or gluconeogenic conditions was performed. In particular, it revealed that the ywkA gene, one of the four paralogues putatively encoding a malic enzyme, was more transcribed during gluconeogenesis. Using a lacZ reporter fusion to the ywkA promoter, it was shown that ywkA was specifically induced by external malate and not subject to glucose catabolite repression. Northern analysis confirmed this expression pattern and demonstrated that ywkA is cotranscribed with the downstream ywkB gene. The ywkA gene product was purified and biochemical studies demonstrated its malic enzyme activity, which was 10-fold higher with NAD than with NADP (k cat/K m 102 and 10 s−1 mM−1, respectively). However, physiological tests with single and multiple mutant strains affected in ywkA and/or in ywkA paralogues showed that ywkA does not contribute to efficient utilization of malate for growth. Transposon mutagenesis allowed the identification of the uncharacterized YufL/YufM two-component system as being responsible for the control of ywkA expression. Genetic analysis and in vitro studies with purified YufM protein showed that YufM binds just upstream of ywkA promoter and activates ywkA transcription in response to the presence of malate in the extracellular medium, transmitted by YufL. ywkA and yufL/yufM could thus be renamed maeA for malic enzyme and malK/malR for malate kinase sensor/malate response regulator, respectively.


1995 ◽  
Vol 108 (4) ◽  
pp. 1779-1789 ◽  
Author(s):  
K.C. Chang ◽  
K. Fernandes ◽  
M.J. Dauncey

Members of the myosin heavy chain (MyHC) gene family show developmental stage- and spatial-specificity of expression. We report on the characterization and identification of a porcine skeletal fast MyHC gene, including its corresponding 5′ end cDNA and 5′ regulatory region. This MyHC isoform was found exclusively in skeletal muscles from about the last quarter of gestation through to adulthood. Expression of this isoform was higher postnatally and its spatial distribution resembled a rosette cluster; each with a ring of fast fibres surrounding a central slow fibre. This rosette pattern was absent in the adult diaphragm but about 20% of the fibres continued to express this MyHC isoform. Further in vivo expression studies, in a variety of morphologically and functionally diverse muscles, showed that this particular skeletal MyHC isoform was expressed in fast oxidative-glycolytic fibres, suggesting that it was the equivalent of the fast IIA isoform. Two domains in the upstream regulatory region were found to confer differentiation-specific expression on C2 myotubes (−1007 to -828 and -455 to -101), based on in vitro transient expression assays using the chloramphenicol acetyltransferase (CAT) reporter gene. Interestingly, for high levels of CAT expression to occur, a 3′ region, extending from the transcriptional start site to part. of intron 2, must be present in all the DNA constructs used.


2008 ◽  
Vol 41 (5) ◽  
pp. 1159-1172 ◽  
Author(s):  
Hanne-Leena Hyyryläinen ◽  
Albert Bolhuis ◽  
Elise Darmon ◽  
Leila Muukkonen ◽  
Pertti Koski ◽  
...  

2015 ◽  
Vol 83 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Kivanc Bilecen ◽  
Jiunn C. N. Fong ◽  
Andrew Cheng ◽  
Christopher J. Jones ◽  
David Zamorano-Sánchez ◽  
...  

Two-component systems play important roles in the physiology of many bacterial pathogens.Vibrio cholerae's CarRS two-component regulatory system negatively regulates expression ofvps(Vibriopolysaccharide) genes and biofilm formation. In this study, we report that CarR confers polymyxin B resistance by positively regulating expression of thealmEFGgenes, whose products are required for glycine and diglycine modification of lipid A. We determined that CarR directly binds to the regulatory region of thealmEFGoperon. Similarly to acarRmutant, strains lackingalmE,almF, andalmGexhibited enhanced polymyxin B sensitivity. We also observed that strains lackingalmEor thealmEFGoperon have enhanced biofilm formation. Our results reveal that CarR regulates biofilm formation and antimicrobial peptide resistance inV. cholerae.


Sign in / Sign up

Export Citation Format

Share Document