scholarly journals Topology and Boundaries of the Aerotaxis Receptor Aer in the Membrane of Escherichia coli

2006 ◽  
Vol 188 (3) ◽  
pp. 894-901 ◽  
Author(s):  
Divya N. Amin ◽  
Barry L. Taylor ◽  
Mark S. Johnson

ABSTRACT Escherichia coli chemoreceptors are type I membrane receptors that have a periplasmic sensing domain, a cytosolic signaling domain, and two transmembrane segments. The aerotaxis receptor, Aer, is different in that both its sensing and signaling regions are proposed to be cytosolic. This receptor has a 38-residue hydrophobic segment that is thought to form a membrane anchor. Most transmembrane prediction programs predict a single transmembrane-spanning segment, but such a topology is inconsistent with recent studies indicating that there is direct communication between the membrane flanking PAS and HAMP domains. We studied the overall topology and membrane boundaries of the Aer membrane anchor by a cysteine-scanning approach. The proximity of 48 cognate cysteine replacements in Aer dimers was determined in vivo by measuring the rate and extent of disulfide cross-linking after adding the oxidant copper phenanthroline, both at room temperature and to decrease lateral diffusion in the membrane, at 4°C. Membrane boundaries were identified in membrane vesicles using 5-iodoacetamidofluorescein and methoxy polyethylene glycol 5000 (mPEG). To map periplasmic residues, accessible cysteines were blocked in whole cells by pretreatment with 4-acetamido-4′-maleimidylstilbene-2, 2′ disulfonic acid before the cells were lysed in the presence of mPEG. The data were consistent with two membrane-spanning segments, separated by a short periplasmic loop. Although the membrane anchor contains a central proline residue that reaches the periplasm, its position was permissive to several amino acid and peptide replacements.

2017 ◽  
Vol 474 (8) ◽  
pp. 1395-1416 ◽  
Author(s):  
Cora Lilia Alvarez ◽  
Gerardo Corradi ◽  
Natalia Lauri ◽  
Irene Marginedas-Freixa ◽  
María Florencia Leal Denis ◽  
...  

We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [32P]Pi released from [γ-32P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-32P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1–1 µM). Exposure to MST7 and MEL enhanced ATP release by 3–7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6–7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.


2006 ◽  
Vol 59 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Carlos Balsalobre ◽  
Jose Manuel Silvan ◽  
Stina Berglund ◽  
Yoshimitsu Mizunoe ◽  
Bernt Eric Uhlin ◽  
...  

1978 ◽  
Vol 56 (6) ◽  
pp. 611-617 ◽  
Author(s):  
Joel H. Weiner ◽  
Elke Lohmeier ◽  
Anthony Schryvers

The two thousand Escherichia coli: Col E1 hybrid plasmid strains of the Clarke and Carbon colony bank (Clarke, L. &Carbon, J. (1976) Cell 9, 91–96) were screened by conjugation for those that correct the deficiency of a mutant unable to transport glycerol-3-phosphate. Six strains harbouring recombinant plasmids carrying the glpT region were identified and characterized with respect to plasmid size and transport properties. The initial rate of glycerol-3-phosphate transport in both whole cells and membrane vesicles prepared from such strains was elevated 3- to 10-fold over strains carrying random DNA inserts, whereas the Km of glycerol-3-phosphate transport was near 12 μM in both experimental and control strains. Four of the six glpT carrying plasmid strains demonstrated elevated levels of the anaerobic glycerol-3-phosphate dehydrogenase coded for by the neighbouring glpA gene.We have transferred the glpT hybrid plasmids into a minicell-producing strain of E. coli X1197 and have used the minicells for specific in vitro synthesis of plasmid-coded proteins. The glpT plasmids code for a 40 000 polypeptide which is localized in the periplasmic space. In addition, they code for a membrane-associated protein of 26 000 which may be the carrier polypeptide.


2003 ◽  
Vol 185 (13) ◽  
pp. 3821-3827 ◽  
Author(s):  
Elisabeth Enggist ◽  
Linda Thöny-Meyer

ABSTRACT CcmE is a heme chaperone active in the cytochrome c maturation pathway of Escherichia coli. It first binds heme covalently to strictly conserved histidine H130 and subsequently delivers it to apo-cytochrome c. The recently solved structure of soluble CcmE revealed a compact core consisting of a β-barrel and a flexible C-terminal domain with a short α-helical turn. In order to elucidate the function of this poorly conserved domain, CcmE was truncated stepwise from the C terminus. Removal of all 29 amino acids up to crucial histidine 130 did not abolish heme binding completely. For detectable transfer of heme to type c cytochromes, only one additional residue, D131, was required, and for efficient cytochrome c maturation, the seven-residue sequence 131DENYTPP137 was required. When soluble forms of CcmE were expressed in the periplasm, the C-terminal domain had to be slightly longer to allow detection of holo-CcmE. Soluble full-length CcmE had low activity in cytochrome c maturation, indicating the importance of the N-terminal membrane anchor for the in vivo function of CcmE.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna A. Shiriaeva ◽  
Ekaterina Savitskaya ◽  
Kirill A. Datsenko ◽  
Irina O. Vvedenskaya ◽  
Iana Fedorova ◽  
...  

Abstract Type I CRISPR-Cas loci provide prokaryotes with a nucleic-acid-based adaptive immunity against foreign DNA. Immunity involves adaptation, the integration of ~30-bp DNA fragments, termed prespacers, into the CRISPR array as spacers, and interference, the targeted degradation of DNA containing a protospacer. Interference-driven DNA degradation can be coupled with primed adaptation, in which spacers are acquired from DNA surrounding the targeted protospacer. Here we develop a method for strand-specific, high-throughput sequencing of DNA fragments, FragSeq, and apply this method to identify DNA fragments accumulated in Escherichia coli cells undergoing robust primed adaptation by a type I-E or type I-F CRISPR-Cas system. The detected fragments have sequences matching spacers acquired during primed adaptation and function as spacer precursors when introduced exogenously into cells by transformation. The identified prespacers contain a characteristic asymmetrical structure that we propose is a key determinant of integration into the CRISPR array in an orientation that confers immunity.


2007 ◽  
Vol 189 (7) ◽  
pp. 2667-2676 ◽  
Author(s):  
Muriel Masi ◽  
Phu Vuong ◽  
Matthew Humbard ◽  
Karen Malone ◽  
Rajeev Misra

ABSTRACT Data suggest a two-receptor model for colicin E1 (ColE1) translocation across the outer membrane of Escherichia coli. ColE1 initially binds to the vitamin B12 receptor BtuB and then translocates through the TolC channel-tunnel, presumably in a mostly unfolded state. Here, we studied the early events in the import of ColE1. Using in vivo approaches, we show that ColE1 is cleaved when added to whole cells. This cleavage requires the presence of the receptor BtuB and the protease OmpT, but not that of TolC. Strains expressing OmpT cleaved ColE1 at K84 and K95 in the N-terminal translocation domain, leading to the removal of the TolQA box, which is essential for ColE1's cytotoxicity. Supported by additional in vivo data, this suggests that a function of OmpT is to degrade colicin at the cell surface and thus protect sensitive E. coli cells from infection by E colicins. A genetic strategy for isolating tolC mutations that confer resistance to ColE1, without affecting other TolC functions, is also described. We provide further in vivo evidence of the multistep interaction between TolC and ColE1 by using cross-linking followed by copurification via histidine-tagged TolC. First, secondary binding of ColE1 to TolC is dependent on primary binding to BtuB. Second, alterations to a residue in the TolC channel interfere with the translocation of ColE1 across the TolC pore rather than with the binding of ColE1 to TolC. In contrast, a substitution at a residue exposed on the cell surface abolishes both binding and translocation of ColE1.


1974 ◽  
Vol 52 (10) ◽  
pp. 854-866 ◽  
Author(s):  
Theodore C. Y. Lo ◽  
M. Khalil Rayman ◽  
B. D. Sanwal

The D-lactate oxidation dependent transport of succinate in membrane vesicles of an Escherichia coli strain lacking succinate dehydrogenase and fumarate reductase is inhibited by several categories of compounds. One category consists of compounds that are electron transport inhibitors (Amytal, Dicumarol, and mercurials), the second of compounds that act as competitive inhibitors of D-lactate dehydrogenase (oxamate and β-chlorolactate), the third of reagents that inhibit the Ca2+–Mg2+-activated ATPase (dicyclohexylcarbodiimide and pyrophosphate), and the fourth of compounds that tap off electrons from the respiratory chain (2,6-dichlorophenolindophenol). None of the succinate transport inhibitors, including mercurials like p-chloromercuribenzoate, interfere with the binding of succinate to the presumed membrane carriers.Membrane preparations from mutants of E. coli lacking D-lactate dehydrogenase are unable to transport succinate in the presence of D-lactate. Whole cells of these mutants, however, take up succinate normally. This observation suggests that D-lactate oxidation is not obligatorily linked in vivo to the uptake of succinate although the possibility is not excluded that transport in such mutants may be linked to some other dehydrogenase. Mutants having altered levels of ATPase, or membrane preparations made from such cells also have greatly reduced capacity to transport succinate. This observation coupled with the finding that ATPase inhibitors block dicarboxylate transport suggests involvement of ATPase in an unknown way in the concentrative uptake of succinate.With the exception of oxamate, β-chlorolactate (competitive inhibitors of D-lactate oxidation), and dicyclohexylcarbodiimide, all of the inhibitors of succinate uptake (including p-chloromercuribenzoate) cause an immediate efflux of preloaded succinate from membrane vesicles. Efflux is also caused by proton conducting reagents. The Km for efflux is 1.9 mM. This value is to be compared with the Km for influx, which is only about 0.02 mM.The weight of evidence favors the view that the active transport of succinate in vesicles occurs as a result of an energization of the membranes by the passage of electrons, although alternate oxidation and reduction of the succinate carrier as a mechanism for transport has not been definitely ruled out.


2004 ◽  
Vol 186 (6) ◽  
pp. 1737-1746 ◽  
Author(s):  
Laurent Cournac ◽  
Geneviève Guedeney ◽  
Gilles Peltier ◽  
Paulette M. Vignais

ABSTRACT The interaction between hydrogen metabolism, respiration, and photosynthesis was studied in vivo in whole cells of Synechocystis sp. strain PCC 6803 by continuously monitoring the changes in gas concentrations (H2, CO2, and O2) with an online mass spectrometer. The in vivo activity of the bidirectional [NiFe]hydrogenase [H2:NAD(P) oxidoreductase], encoded by the hoxEFUYH genes, was also measured independently by the proton-deuterium (H-D) exchange reaction in the presence of D2. This technique allowed us to demonstrate that the hydrogenase was insensitive to light, was reversibly inactivated by O2, and could be quickly reactivated by NADH or NADPH (+H2). H2 was evolved by cells incubated anaerobically in the dark, after an adaptation period. This dark H2 evolution was enhanced by exogenously added glucose and resulted from the oxidation of NAD(P)H produced by fermentation reactions. Upon illumination, a short (less than 30-s) burst of H2 output was observed, followed by rapid H2 uptake and a concomitant decrease in CO2 concentration in the cyanobacterial cell suspension. Uptake of both H2 and CO2 was linked to photosynthetic electron transport in the thylakoids. In the ndhB mutant M55, which is defective in the type I NADPH-dehydrogenase complex (NDH-1) and produces only low amounts of O2 in the light, H2 uptake was negligible during dark-to-light transitions, allowing several minutes of continuous H2 production. A sustained rate of photoevolution of H2 corresponding to 6 μmol of H2 mg of chlorophyll−1 h−1 or 2 ml of H2 liter−1 h−1 was observed over a longer time period in the presence of glucose and was slightly enhanced by the addition of the O2 scavenger glucose oxidase. By the use of the inhibitors DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), it was shown that two pathways of electron supply for H2 production operate in M55, namely photolysis of water at the level of photosystem II and carbohydrate-mediated reduction of the plastoquinone pool.


1992 ◽  
Vol 119 (4) ◽  
pp. 787-796 ◽  
Author(s):  
K A Beck ◽  
M Chang ◽  
F M Brodsky ◽  
J H Keen

We have examined the in vitro behavior of clathrin-coated vesicles that have been stripped of their surface coats such that the majority of the clathrin is removed but substantial amounts of clathrin assembly proteins (AP) remain membrane-associated. Aggregation of these stripped coated vesicles (s-CV) is observed when they are placed under conditions that approximate the pH and ionic strength of the cell interior (pH 7.2, approximately 100 mM salt). This s-CV aggregation reaction is rapid (t1/2 < or = 0.5 min), independent of temperature within a range of 4-37 degrees C, and unaffected by ATP, guanosine-5'-O-(3-thiophosphate), and in particular EGTA, distinguishing it from Ca(2+)-dependent membrane aggregation reactions. The process is driven by the action of membrane-associated AP molecules since partial proteolysis results in a full loss of activity and since aggregation is abolished by pretreatment of the s-CVs with a monoclonal antibody that reacts with the alpha subunit of AP-2. However, vesicle aggregation is not inhibited by PPPi, indicating that the previously characterized polyphosphate-sensitive AP-2 self-association is not responsible for the reaction. The vesicle aggregation reaction can be reconstituted: liposomes of phospholipid composition approximating that found on the cytoplasmic surfaces of the plasma membrane and of coated vesicles (70% L-alpha-phosphatidylethanolamine (type I-A), 15% L-alpha-phosphatidyl-L-serine, and 15% L-alpha-phosphatidylinositol) aggregated after addition of AP-2, but not of AP-1, AP-3 (AP180), or pure clathrin triskelions. Aggregation of liposomes is abolished by limited proteolysis of AP-2 with trypsin. In addition, a highly purified AP-2 alpha preparation devoid of beta causes liposome aggregation, whereas pure beta subunit does not, consistent with results obtained in the s-CV assay which also indicate the involvement of the alpha subunit. Using a fluorescence energy transfer assay we show that AP-2 does not cause fusion of liposomes under physiological solution conditions. However, since the fusion of membranes necessarily requires the close opposition of the two participating bilayers, the AP-2-dependent vesicle aggregation events that we have identified may represent an initial step in the formation and fusion of endosomes that occur subsequent to endocytosis and clathrin uncoating in vivo.


Sign in / Sign up

Export Citation Format

Share Document