scholarly journals Evaluation of a PCR Melting Profile Technique for Bacterial Strain Differentiation

2006 ◽  
Vol 44 (7) ◽  
pp. 2327-2332 ◽  
Author(s):  
B. Krawczyk ◽  
A. Samet ◽  
J. Leibner ◽  
A. Sledzinska ◽  
J. Kur
2014 ◽  
Vol 59 (3) ◽  
pp. 292-298 ◽  
Author(s):  
A. A. Zasada ◽  
K. Formińska ◽  
T. Wołkowicz ◽  
E. Badell ◽  
N. Guiso

Author(s):  
Shengwen Duan ◽  
Bingrong Xu ◽  
Lifeng Cheng ◽  
Xiangyuan Feng ◽  
Qi Yang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinrui Guo ◽  
Xiangxiang Zhu ◽  
Miao Zeng ◽  
Longkai Qi ◽  
Xiaocui Tang ◽  
...  

AbstractGut microbiota (GM) metabolites can modulate the physiology of the host brain through the gut–brain axis. We wished to discover connections between the GM, neurotransmitters, and brain function using direct and indirect methods. A diet with increased amounts of sugar and fat (high-sugar and high-fat (HSHF) diet) was employed to disturb the host GM. Then, we monitored the effect on pathology, neurotransmitter metabolism, transcription, and brain circularRNAs (circRNAs) profiles in mice. Administration of a HSHF diet-induced dysbacteriosis, damaged the intestinal tract, changed the neurotransmitter metabolism in the intestine and brain, and then caused changes in brain function and circRNA profiles. The GM byproduct trimethylamine-n-oxide could degrade some circRNAs. The basal level of the GM decided the conversion rate of choline to trimethylamine-n-oxide. A change in the abundance of a single bacterial strain could influence neurotransmitter secretion. These findings suggest that a new link between metabolism, brain circRNAs, and GM. Our data could enlarge the “microbiome–transcriptome” linkage library and provide more information on the gut–brain axis. Hence, our findings could provide more information on the interplay between the gut and brain to aid the identification of potential therapeutic markers and mechanistic solutions to complex problems encountered in studies of pathology, toxicology, diet, and nutrition development.


2021 ◽  
Vol 13 (14) ◽  
pp. 8030
Author(s):  
Shehzad Mehmood ◽  
Amir Abdullah Khan ◽  
Fuchen Shi ◽  
Muhammad Tahir ◽  
Tariq Sultan ◽  
...  

Plant growth-promoting rhizobacteria play a substantial role in plant growth and development under biotic and abiotic stress conditions. However, understanding about the functional role of rhizobacterial strains for wheat growth under salt stress remains largely unknown. Here we investigated the antagonistic bacterial strain Bacillus aryabhattai PM34 inhabiting ACC deaminase and exopolysaccharide producing ability to ameliorate salinity stress in wheat seedlings under in vitro conditions. The strain PM34 was isolated from the potato rhizosphere and screened for different PGP traits comprising nitrogen fixation, potassium, zinc solubilization, indole acetic acid, siderophore, and ammonia production, along with various extracellular enzyme activities. The strain PM34 showed significant tolerance towards both abiotic stresses including salt stress (NaCl 2 M), heavy metal (nickel, 100 ppm, and cadmium, 300 ppm), heat stress (60 °C), and biotic stress through mycelial inhibition of Rhizoctonia solani (43%) and Fusarium solani (41%). The PCR detection of ituC, nifH, and acds genes coding for iturin, nitrogenase, and ACC deaminase enzyme indicated the potential of strain PM34 for plant growth promotion and stress tolerance. In the in vitro experiment, NaCl (2 M) decreased the wheat growth while the inoculation of strain PM34 enhanced the germination% (48%), root length (76%), shoot length (75%), fresh biomass (79%), and dry biomass (87%) over to un-inoculated control under 2M NaCl level. The results of experiments depicted the ability of antagonistic bacterial strain Bacillus aryabhattai PM34 to augment salt stress tolerance when inoculated to wheat plants under saline environment.


Author(s):  
Ewa Baranowska-Wójcik ◽  
Dominik Szwajgier ◽  
Klaudia Gustaw

AbstractFood-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs-nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, questions concerning its effect on the gastrointestinal microbiota have been raised. In the present study, we examined interactions between bacteria and TiO2. The study involved six pathogenic/opportunistic bacterial strains and four different-sized TiO2 types: three types of food-grade E171 compounds and TiO2 NPs (21 nm). Each bacterial strain was exposed to four concentrations of TiO2 (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the analyzed strains, caused by the type and concentration of TiO2, were observed. The growth of a majority of the strains was shown to be inhibited after exposure to 300 and 600 mg/L of the food-grade E171 and TiO2 NPs.


Sign in / Sign up

Export Citation Format

Share Document