scholarly journals A Novel Real-Time PCR-Based Screening Test with Pooled Fecal Samples for Bovine Johne’s Disease

2020 ◽  
Vol 58 (12) ◽  
Author(s):  
Satoko Kawaji ◽  
Reiko Nagata ◽  
Yasutaka Minegishi ◽  
Yumi Saruyama ◽  
Akiko Mita ◽  
...  

ABSTRACT Johne’s disease (JD) is an economically important infectious disease in livestock farming caused by Mycobacterium avium subsp. paratuberculosis. As an alternative to serological tests, which are used mainly for the screening of whole herds, we developed a novel ResoLight-based real-time PCR (RL-PCR) assay with pooled fecal samples for the detection of fecal shedders in cattle herds. The RL-PCR assay included an internal amplification control (IC) which was amplified using the same primer pair as the target molecule M. avium subsp. paratuberculosis IS900 and differentiated based on melting temperatures. Individual fecal suspensions were pooled and concentrated by centrifugation to avoid a loss of sensitivity by the dilution effect. Combined with a DNA extraction kit (Johne-PureSpin; FASMAC), no inhibition of PCR amplification was observed with up to 15 fecal samples in a pool. The detection limit of RL-PCR at a pool size of 10 was 10 M. avium subsp. paratuberculosis organisms per gram of feces, which was comparable to that of individual testing. A total of 2,654 animals in 12 infected herds were screened by individual antibody-enzyme-linked immunosorbent assay (ELISA) and the RL-PCR assay using pooled feces. Fifty animals were diagnosed with JD through the screening by RL-PCR, compared with only 5 by ELISA (which were also positive in RL-PCR). In 7 JD-free herds, the results of 4 out of 327 pools (1.2%) were invalid due to the lack of IC amplification, and then animals were confirmed negative individually. Our results suggest that implementation of herd screening by pooled RL-PCR would advance the monitoring and control of JD in cattle herds.

2015 ◽  
Vol 53 (12) ◽  
pp. 3935-3937 ◽  
Author(s):  
Daniel Golparian ◽  
Stina Boräng ◽  
Martin Sundqvist ◽  
Magnus Unemo

The new BD Max GC real-time PCR assay showed high clinical and analytical sensitivity and specificity. It can be an effective and accurate supplementary test for the BD ProbeTec GC Qx amplified DNA assay, which had suboptimal specificity, and might also be used for initial detection ofNeisseria gonorrhoeae.


2013 ◽  
Vol 79 (24) ◽  
pp. 7654-7661 ◽  
Author(s):  
Andrée F. Maheux ◽  
Ève Bérubé ◽  
Dominique K. Boudreau ◽  
Romain Villéger ◽  
Philippe Cantin ◽  
...  

ABSTRACTWe first determined the analytical specificity and ubiquity (i.e., the ability to detect all or most strains) of aClostridium perfringens-specific real-time PCR (rtPCR) assay based on thecpagene (cpartPCR) by using a bacterial strain panel composed ofC. perfringensand non-C. perfringens Clostridiumstrains. All non-C. perfringens Clostridiumstrains tested negative, whereas allC. perfringensstrains tested positive with thecpartPCR, for an analytical specificity and ubiquity of 100%. ThecpartPCR assay was then used to confirm the identity of 116 putativeC. perfringensisolates recovered after filtration of water samples and culture on mCP agar. Colonies presenting discordant results between the phenotype on mCP agar andcpartPCR were identified by sequencing the 16S rRNA andcpagenes. Four mCP−/rtPCR+colonies were identified asC. perfringens, whereas 3 mCP+/rtPCR−colonies were identified as non-C. perfringens. ThecpartPCR was negative with all 51 non-C. perfringensstrains and positive with 64 of 65C. perfringensstrains. Finally, we compared mCP agar and a CRENAME (concentration andrecovery of microbial particles,extraction ofnucleicacids, andmolecularenrichment) procedure pluscpartPCR (CRENAME +cpartPCR) for their abilities to detectC. perfringensspores in drinking water. CRENAME +cpartPCR detected as few as oneC. perfringensCFU per 100 ml of drinking water sample in less than 5 h, whereas mCP agar took at least 25 h to deliver results. CRENAME +cpartPCR also allows the simultaneous and sensitive detection ofEscherichia coliandC. perfringensfrom the same potable water sample. In itself, it could be used to assess the public health risk posed by drinking water potentially contaminated with pathogens more resistant to disinfection.


2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Nawal El Houmami ◽  
Guillaume André Durand ◽  
Janek Bzdrenga ◽  
Anne Darmon ◽  
Philippe Minodier ◽  
...  

ABSTRACTKingella kingaeis a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium using culture and broad-range 16S rRNA gene PCR assays from clinical specimens have proven unsatisfactory; therefore, by the late 2000s, these were gradually phased out to explore the benefits of specific real-time PCR tests targeting thegroELgene and the RTX locus ofK. kingae. However, recent studies showed that real-time PCR (RT-PCR) assays targeting theKingellasp. RTX locus that are currently available for the diagnosis ofK. kingaeinfection lack specificity because they could not distinguish betweenK. kingaeand the recently describedKingella negevensisspecies. Furthermore,in silicoanalysis of thegroELgene from a large collection of 45K. kingaestrains showed that primers and probes fromK. kingaegroEL-based RT-PCR assays display a few mismatches withK. kingae groELvariations that may result in decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative togroEL- and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, aK. kingae-specific RT-PCR assay targeting the malate dehydrogenase (mdh) gene was developed for predicting no mismatch between primers and probe and 18 variants of theK. kingae mdhgene from 20 distinct sequence types ofK. kingae. This novelK. kingae-specific RT-PCR assay demonstrated high specificity and sensitivity and was successfully used to diagnoseK. kingaeinfections and carriage in 104 clinical specimens from children between 7 months and 7 years old.


2020 ◽  
Vol 59 (1) ◽  
pp. e01986-20
Author(s):  
Ibne Karim M. Ali ◽  
Shantanu Roy

ABSTRACTThere are over 40 species within the genus Entamoeba, eight of which infect humans. Of these, four species (Entamoeba histolytica, E. dispar, E. moshkovskii, and E. bangladeshi) are morphologically indistinguishable from each other, and yet differentiation is important for appropriate treatment decisions. Here, we developed a hydrolysis probe-based tetraplex real-time PCR assay that can simultaneously detect and differentiate these four species in clinical samples. In this assay, multicopy small-subunit (SSU) ribosomal DNA (rDNA) sequences were used as targets. We determined that the tetraplex real-time PCR can detect amebic DNA corresponding to as little as a 0.1 trophozoite equivalent of any of these species. We also determined that this assay can detect E. histolytica DNA in the presence of 10-fold more DNA from another Entamoeba species in mixed-infection scenarios. With a panel of more than 100 well-characterized clinical samples diagnosed and confirmed using a previously published duplex real-time PCR (capable of detecting E. histolytica and E. dispar), our tetraplex real-time PCR assay demonstrated levels of sensitivity and specificity comparable with those demonstrated by the duplex real-time PCR assay. The advantage of our assay over the duplex assay is that it can specifically detect two additional Entamoeba species and can be used in conventional PCR format. This newly developed assay will allow further characterization of the epidemiology and pathogenicity of the four morphologically identical Entamoeba species, especially in low-resource settings.


2016 ◽  
Vol 54 (3) ◽  
pp. 805-808 ◽  
Author(s):  
P. Hemarajata ◽  
S. Yang ◽  
O. O. Soge ◽  
R. M. Humphries ◽  
J. D. Klausner

In the United States, 19.2% ofNeisseria gonorrhoeaeisolates are resistant to ciprofloxacin. We evaluated a real-time PCR assay to predict ciprofloxacin susceptibility using residual DNA from the Roche Cobas 4800 CT/NG assay. The results of the assay were 100% concordant with agar dilution susceptibility test results for 100 clinical isolates. Among 76 clinical urine and swab specimens positive forN. gonorrhoeaeby the Cobas assay, 71% could be genotyped. The test took 1.5 h to perform, allowing the physician to receive results in time to make informed clinical decisions.


2019 ◽  
Vol 18 ◽  
pp. 100345
Author(s):  
Camila Guariz Homem ◽  
Isabela Garcia do Nascimento ◽  
Bruna Nicoleti Santana ◽  
Marcelo Vasconcelos Meireles

2017 ◽  
Vol 55 (5) ◽  
pp. 1377-1387 ◽  
Author(s):  
Wiwit Tantibhedhyangkul ◽  
Ekkarat Wongsawat ◽  
Saowaluk Silpasakorn ◽  
Duangdao Waywa ◽  
Nuttawut Saenyasiri ◽  
...  

ABSTRACTScrub typhus, caused byOrientia tsutsugamushi, is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targetingO. tsutsugamushi47-kDa,groEL, and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness.


2015 ◽  
Vol 53 (7) ◽  
pp. 2337-2339 ◽  
Author(s):  
Robert F. Luo ◽  
Cheyenne Curry ◽  
Nathan Taylor ◽  
Indre Budvytiene ◽  
Niaz Banaei

By targeting theerm(41) andrrlgenes in theMycobacterium abscessusgroup, a multiplex real-time PCR assay for clarithromycin resistance showed 95% (38/40) concordance with nucleic acid testing and 95% (37/39) concordance with phenotypic testing. This assay provides a simple and rapid alternative to extended incubation orerm(41) sequencing.


2012 ◽  
Vol 11 (2) ◽  
pp. 1
Author(s):  
B. A. Jarullah, J. Aed Gati, and A. Saleh

The current study was conducted to investigate the prevalence of BVD virus in Basrah and Nassirya city by using ELISA and RT-PCR. Two hundreds and eighty two samples of non vaccinated cattle sera samples collected from two regions of Iraq (188 samples from Nassirya city and 92 samples from Basrah city). Samples tested by Enzyme Linked Immunosorbent Assay (ELISA) antigen capture. Positive results were 20 samples ( 8 sample in Thi-Qar and 12 positive samples from Basrah). All samples submitted to indirect ELISA(IDEXX HerdCheck ELISA )for detect BVDV antibodies .Genotyping of all 20 positive samples to antigen detection were tested by Real time PCR, using Cador BVDV ½ kit, after extraction of virus RNA by QIAamp mini kit. The results revealed that there were 20 positive sample according to direct ELISA(Ag detection), while 66 sample were positive to indirect ELISA, as well as, the result of RT-PCR showed that there were two sample positive to BVDV type-1 (one sample form each city).Key words: BVDV, Genotype, ELISA, Iraq, Real time PCR.


Sign in / Sign up

Export Citation Format

Share Document