scholarly journals Prevalence of Bovine viral diarrhea virus in cattle herds from Basrah and Nassirya Provinces by direct and indirect Elisa and Real time qPCR

2012 ◽  
Vol 11 (2) ◽  
pp. 1
Author(s):  
B. A. Jarullah, J. Aed Gati, and A. Saleh

The current study was conducted to investigate the prevalence of BVD virus in Basrah and Nassirya city by using ELISA and RT-PCR. Two hundreds and eighty two samples of non vaccinated cattle sera samples collected from two regions of Iraq (188 samples from Nassirya city and 92 samples from Basrah city). Samples tested by Enzyme Linked Immunosorbent Assay (ELISA) antigen capture. Positive results were 20 samples ( 8 sample in Thi-Qar and 12 positive samples from Basrah). All samples submitted to indirect ELISA(IDEXX HerdCheck ELISA )for detect BVDV antibodies .Genotyping of all 20 positive samples to antigen detection were tested by Real time PCR, using Cador BVDV ½ kit, after extraction of virus RNA by QIAamp mini kit. The results revealed that there were 20 positive sample according to direct ELISA(Ag detection), while 66 sample were positive to indirect ELISA, as well as, the result of RT-PCR showed that there were two sample positive to BVDV type-1 (one sample form each city).Key words: BVDV, Genotype, ELISA, Iraq, Real time PCR.

2020 ◽  
Vol 58 (12) ◽  
Author(s):  
Satoko Kawaji ◽  
Reiko Nagata ◽  
Yasutaka Minegishi ◽  
Yumi Saruyama ◽  
Akiko Mita ◽  
...  

ABSTRACT Johne’s disease (JD) is an economically important infectious disease in livestock farming caused by Mycobacterium avium subsp. paratuberculosis. As an alternative to serological tests, which are used mainly for the screening of whole herds, we developed a novel ResoLight-based real-time PCR (RL-PCR) assay with pooled fecal samples for the detection of fecal shedders in cattle herds. The RL-PCR assay included an internal amplification control (IC) which was amplified using the same primer pair as the target molecule M. avium subsp. paratuberculosis IS900 and differentiated based on melting temperatures. Individual fecal suspensions were pooled and concentrated by centrifugation to avoid a loss of sensitivity by the dilution effect. Combined with a DNA extraction kit (Johne-PureSpin; FASMAC), no inhibition of PCR amplification was observed with up to 15 fecal samples in a pool. The detection limit of RL-PCR at a pool size of 10 was 10 M. avium subsp. paratuberculosis organisms per gram of feces, which was comparable to that of individual testing. A total of 2,654 animals in 12 infected herds were screened by individual antibody-enzyme-linked immunosorbent assay (ELISA) and the RL-PCR assay using pooled feces. Fifty animals were diagnosed with JD through the screening by RL-PCR, compared with only 5 by ELISA (which were also positive in RL-PCR). In 7 JD-free herds, the results of 4 out of 327 pools (1.2%) were invalid due to the lack of IC amplification, and then animals were confirmed negative individually. Our results suggest that implementation of herd screening by pooled RL-PCR would advance the monitoring and control of JD in cattle herds.


2014 ◽  
Vol 77 (3) ◽  
pp. 453-458 ◽  
Author(s):  
EUN JEONG HEO ◽  
BO RA SONG ◽  
HYUN JUNG PARK ◽  
YOUNG JO KIM ◽  
JIN SAN MOON ◽  
...  

The objectives of this study were to evaluate the detection of Listeria monocytogenes in different ready-to-eat foods using real-time PCR (RT-PCR). Various concentrations (100 to 105 CFU/ml) of L. monocytogenes ATCC 19115 were inoculated into ham, sausage, ground meat, processed milk, cheese, and infant formula. L. monocytogenes ATCC 19115 in the samples was then enumerated on Oxford agar, and DNA was extracted from the samples before and after incubation at 36°C for 4 h. A set of primers and hybridization probe designed in this study was then used to detect the pathogen. The standard curve was then prepared by plotting cycle threshold values for each dilution versus L. monocytogenes cell counts (log CFU). The specificity of the set of primers and hybridization probe was appropriate. A 4-h incubation at 36°C before DNA extraction produced optimum standard curves in comparison to the results for a 0-h incubation. Thus, a 4-h incubation at 36°C was applied for monitoring L. monocytogenes in collected food samples. To monitor L. monocytogenes in foods, 533 samples (ham, 129; sausage, 226; ground meat, 72; processed cheese, 54; processed milk, 42; and infant formula, 10) were collected from retail markets and from the step before pasteurization in plants. Of all 533 samples, 4 samples (0.8%) showed positive signals in RT-PCR. Two samples from hams (1.6%) and two samples from sausages (0.9%) were determined to be positive for L. monocytogenes at <100 CFU/g. The results indicate that the RT-PCR detection method with the set of primers and hybridization probe designed in this study should be useful in monitoring for L. monocytogenes in processed meat and milk products.


2014 ◽  
Vol 8 (10) ◽  
pp. 1339-1343 ◽  
Author(s):  
Gamal Wareth ◽  
Falk Melzer ◽  
Mandy C Elschner ◽  
Heinrich Neubauer ◽  
Uwe Roesler

Introduction: Brucellosis in Egypt is an endemic disease among animals and humans. In endemic developing countries, dairy products produced from untreated milk are a potential threat to public health. The aim of this study was to detect brucellae in milk and milk products produced from apparently healthy animals to estimate the prevalence of contamination. Methodology: Two hundred and fifteen unpasteurized milk samples were collected from apparently healthy cattle (n = 72) and buffaloes (n = 128) reared on small farms, and from milk shops (n = 15) producing dairy products for human consumption. All milk samples were examined by indirect enzyme-linked immunosorbent assay (iELISA) and real-time PCR (RT-PCR) to detect Brucella antibodies and Brucella-specific DNA, respectively. Results: Using iELISA, anti-Brucella antibodies were detected in 34 samples (16%), while RT-PCR amplified Brucella-specific DNA from 17 milk samples (7.9%). Species-specific IS711 RT-PCR identified 16 of the RT-PCR-positive samples as containing B. melitensis DNA; 1 RT-PCR-positive sample was identified as containing B. abortus DNA. Conclusions: The detection of Brucella DNA in milk or milk products sold for human consumption, especially the highly pathogenic species B. melitensis, is of obvious concern. The shedding of Brucella spp. in milk poses an increasing threat to consumers in Egypt. Consumption of dairy products produced from non-pasteurized milk by individual farmers operating under poor hygienic conditions represents an unacceptable risk to public health.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1662
Author(s):  
Dominik Łagowski ◽  
Sebastian Gnat ◽  
Aneta Nowakiewicz ◽  
Aleksandra Trościańczyk

Dermatophytes are filamentous fungi with the ability to digest and grow on keratinized substrates. The ongoing improvements in fungal detection techniques give new scope for clinical implementations in laboratories and veterinary clinics, including the monitoring of the disease and carrier status. The technologically advanced methods for dermatophyte detection include molecular methods based on PCR. In this context, the aim of this study was to carry out tests on the occurrence of dermatophytes in cattle herds using qPCR methods and a comparative analysis with conventional methods. Each sample collected from ringworm cases and from asymptomatic cattle was divided into three parts and subjected to the real-time PCR technique, direct light microscopy analysis, and culture-based methods. The use of the real-time PCR technique with pan-dermatophyte primers detected the presence of dermatophytes in the sample with a 10.84% (45% vs. 34.17%) higher efficiency than direct analysis with light microscopy. Moreover, a dermatophyte culture was obtained from all samples with a positive qPCR result. In conclusion, it seems that this method can be used with success to detect dermatophytes and monitor cowsheds in ringworm cases and carriers in cattle.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 641-644 ◽  
Author(s):  
Manphool S. Fageria ◽  
Mathuresh Singh ◽  
Upeksha Nanayakkara ◽  
Yvan Pelletier ◽  
Xianzhou Nie ◽  
...  

The current-season spread of Potato virus Y (PVY) was investigated in New Brunswick, Canada, in 11 potato fields planted with six different cultivars in 2009 and 2010. In all, 100 plants selected from each field were monitored for current-season PVY infections using enzyme-linked immunosorbent assay (ELISA) and real-time reverse-transcription polymerase chain reaction (RT-PCR) assay. Average PVY incidence in fields increased from 0.6% in 2009 and 2% in 2010 in the leaves to 20.3% in 2009 and 21.9% in 2010 in the tubers at the time of harvest. In individual fields, PVY incidence in tubers reached as high as 37% in 2009 and 39% in 2010 at the time of harvest. Real-time RT-PCR assay detected more samples with PVY from leaves than did ELISA. A higher number of positive samples was also detected with real-time RT-PCR from growing tubers compared with the leaves collected from the same plant at the same sampling time. PVY incidence determined from the growing tubers showed a significant positive correlation with the PVY incidence of tubers after harvest. Preharvest testing provides another option to growers to either top-kill the crop immediately to secure the seed market when the PVY incidence is low or leave the tubers to develop further for table or processing purposes when incidence of PVY is high.


2004 ◽  
Vol 49 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Ayhan Kubar ◽  
Mehmet Yapar ◽  
Bulent Besirbellioglu ◽  
I.Yasar Avci ◽  
Cakır Guney

2012 ◽  
Vol 10 (3) ◽  
pp. 329-334 ◽  
Author(s):  
D.M. Valero-Hervás ◽  
P. Morales ◽  
M.J. Castro ◽  
P. Varela ◽  
M. Castillo-Rama ◽  
...  

“Slow” and “Fast” C3 complement variants (C3S and C3F) result from a g.304C>G polymorphism that changes arginine to glycine at position 102. C3 variants are associated with complement-mediated diseases and outcome in transplantation. In this work C3 genotyping is achieved by a Real Time PCR - High Resolution Melting (RT-PCR-HRM) optimized method. In an analysis of 49 subjects, 10.2% were C3FF, 36.7% were C3SF and 53.1% were C3SS. Allelic frequencies (70% for C3S and 30% for C3F) were in Hardy-Weinberg equilibrium and similar to those published previously. When comparing RT-PCR-HRM with the currently used Tetraprimer-Amplification Refractory Mutation System PCR (T-ARMS-PCR), coincidence was 93.8%. The procedure shown here includes a single primer pair and low DNA amount per reaction. Detection of C3 variants by RT-PCR-HRM is accurate, easy, fast and low cost, and it may be the method of choice for C3 genotyping.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1702
Author(s):  
Arkadiusz Dors ◽  
Ewelina Czyżewska-Dors ◽  
Grzegorz Woźniakowski

Background: The major pathogenic intestinal spirochetes affecting pigs during the growing- finishing stage of production include Brachyspira hyodysenteriae and Brachyspira pilosicoli. Infections by these pathogens, which affect the economics of pig production, can result in mortality, growth rate losses and substantial antibiotic costs. The aim of this study was to assess the current occurrence of B. hyodysenteriae and B. pilosicoli in Polish pig herds. Moreover, associations between the presence of diarrhea or other intestinal pathogens and occurrence of B. hyodysenteriae and B. pilosicoli in pigs were investigated. Methods: Between January 2017 and August 2019, a total of 401 samples of pig feces from 95 different herds were submitted to the National Veterinary Research Institute of Poland. These samples were obtained from pigs older than 7 weeks. All the received fecal samples were examined for the presence of B. hyodysenteriae, B. pilosicoli and Lawsonia intracellularis by real-time PCR. Results: For B. pilosicoli, 4.5% (95% CI, 2.5–7.0%) of samples and 13.7% (95% CI, 7.5–22.3%) of herds were positive. Out of 12 samples, B. pilosicoli was detected simultaneously with L. intracellularis, B. hyodysenteriae and B. pilosicoli were detected alone in two samples each. In terms of B. hyodysenteriae, 7.0% of samples (95% CI, 4.7–9.9%) from 18.9% of herds (95% CI, 11.6–28.3%) were positive in real time PCR. The presence of B. hyodysenteriae in fecal samples was associated with the presence of diarrhea in pigs. Conclusions: This study confirmed that B. pilosicoli infections occur in Polish pig herds, but the prevalence is at a low level and the presence of B. pilosicoli is not associated with the development of diarrhea in pigs. B. hyodysenteriae is still a common cause of diarrhea among pigs from Polish herds.


Sign in / Sign up

Export Citation Format

Share Document