johne’s disease
Recently Published Documents


TOTAL DOCUMENTS

691
(FIVE YEARS 88)

H-INDEX

43
(FIVE YEARS 4)

2022 ◽  
Vol 199 ◽  
pp. 105552
Author(s):  
Alessio Sposato ◽  
Angela Fanelli ◽  
Marco Cordisco ◽  
Adriana Trotta ◽  
Michela Galgano ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Yanhong Bao ◽  
Yu Yao ◽  
Zi Wang ◽  
Shuiyin Wu ◽  
Xiuyun Jiang ◽  
...  

Mycobacterium avium subsp. paratuberculosis (MAP) is the pathogen of Johne’s disease (paratuberculosis), which mainly causes chronic infectious granulomatous enteritis in ruminants and has brought huge economic losses to animal husbandry. As a specific intracellular pathogen, when MAP invades the body, it is internalized by macrophages where it is able to replicate by inhibition of the phagosome maturation, escaping the host immune system and surviving, which leads to the spread of the disease. More recent studies have shown that circRNA is involved in many pathological and physiological processes of the body as the molecular sponge of miRNA, the scaffold of RNA binding protein and having the characteristic of being able to translate into protein. In this study, the mRNA and circRNA expression profiles of MAP-infected bovine monocyte-macrophages and uninfected bovine cells were analyzed by high-throughput sequencing. A total of 618 differentially expressed mRNA were screened out, including 322 upregulated mRNA and 296 downregulated mRNA. In addition, the analysis of circRNA differential expression profile showed 39 differentially expressed genes including 12 upregulated and 27 downregulated genes. Moreover, differential genes belonging to cytokine activity, chemokine activity, inflammatory reaction, apoptosis, and other functional groups related to macrophage immune response were significantly enriched in Gene Ontology (GO). Multiple signal pathways including NF-κB, MAPK, Toll-like receptor, IL-17, JAK-STAT, and other signaling pathways related to activating macrophage immune response were significantly enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, RT-qPCR technology verified the accuracy of the mRNA sequencing results. In this study, we have obtained the transcriptome information of mRNA and circRNA of bovine monocyte-macrophage infected with MAP. These results will provide data support for the further study of mRNA–miRNA–circRNA network and immune escape mechanism of MAP and will enrich the knowledge of the molecular immune mechanisms of Johne’s disease as well.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marta Alonso-Hearn ◽  
Miguel Salgado ◽  
Kumudika de Silva

2021 ◽  
Vol 8 ◽  
Author(s):  
Sanjay Mallikarjunappa ◽  
Luiz F. Brito ◽  
Sameer D. Pant ◽  
Flavio S. Schenkel ◽  
Kieran G. Meade ◽  
...  

Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maryam Heidari ◽  
Abbas Pakdel ◽  
Mohammad Reza Bakhtiarizadeh ◽  
Fariba Dehghanian

Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne’s disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis were conducted to explore coexpression modules from which nonpreserved modules had altered connectivity patterns. After identification of hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight nonpreserved modules. Twenty-one of 47 nonpreserved modules showed significant biological processes related to the immune system and MAP infection. Some of the MAP infection’s related pathways in the most important nonpreserved modules comprise “positive regulation of cytokine-mediated signaling pathway,” “negative regulation of leukocyte migration,” “T-cell differentiation,” “neutrophil activation,” and “defense response.” Furthermore, several genes were identified in these modules, including SLC11A1, MAPK8IP1, HMGCR, IFNGR1, CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-DMA, which are potentially associated with MAP pathogenesis. This study not only enhanced our knowledge of molecular mechanisms behind MAP infection but also highlighted several promising hub and hub-hub genes involved in macrophage-pathogen interaction.


2021 ◽  
pp. 030098582110257
Author(s):  
Amalia Naranjo- Lucena ◽  
Laura Garza-Cuartero ◽  
Conor McAloon ◽  
Grace Mulcahy ◽  
Annetta Zintl ◽  
...  

Johne’s disease (JD) is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP). While it is generally accepted that MAP employs immune subversion mechanisms, aspects of the host-pathogen relationship are not fully understood. We sampled 3 ileal tissue sections from 17 naturally infected cattle ( n = 51 sections) to analyze differences in cell types, apoptosis, and phagocytic cells. Diffuse multibacillary (DM) was the most common lesion type ( n = 17) followed by diffuse intermediate (DI; n = 15). DM lesions had significantly greater proportion of Treg cells (CD3+ FoxP3+) relative to all CD3+ T cells as compared to DI forms ( P < .05). CD68+ individual cell size was significantly smaller in DM than in diffuse lymphocytic (DL) forms ( P < .05). Area of caspase-3 positivity (apoptosis) was greater in DM lesions than DL ( P < .05) and DI ( P < .0001), and was linked to higher numbers of MAP within the macrophage.


Sign in / Sign up

Export Citation Format

Share Document