scholarly journals Immunoglobulin M Antibody Test To Detect Genogroup II Norwalk-Like Virus Infection

1999 ◽  
Vol 37 (9) ◽  
pp. 2983-2986 ◽  
Author(s):  
James P. Brinker ◽  
Neil R. Blacklow ◽  
Xi Jiang ◽  
Mary K. Estes ◽  
Christine L. Moe ◽  
...  

Sera obtained from adult volunteers inoculated with genogroup II Norwalk-like viruses (NLVs), Hawaii virus, and Snow Mountain virus and from patients involved in outbreaks of gastroenteritis were tested for genogroup II NLV Mexico virus-specific immunoglobulin M (IgM) by use of a monoclonal antibody, recombinant Mexico virus antigen (rMXV)-based IgM capture enzyme-linked immunosorbent assay (ELISA). Sera from genogroup I Norwalk virus (NV)-inoculated volunteers and from patients involved in a genogroup I NLV outbreak were also tested. In sera from those infected with genogroup I NV or NLVs in volunteer and outbreak studies, only 3 of 25 were rMXV IgM positive; in contrast, 24 of 25 were IgM positive for recombinant NV (rNV). In sera from those infected with genogroup II NLVs in volunteer and outbreak studies, 28 of 47 were rMXV IgM positive and none were IgM positive for rNV, showing the specificity of each IgM test for its respective genogroup. In an outbreak of gastroenteritis not characterized as being of viral etiology but suspected to be due to NV, 7 of 13 persons had IgM responses to rMXV, whereas none had IgM responses to rNV, thus establishing the diagnosis as genogroup II NLV infection. The rMXV-based IgM capture ELISA developed is specific for the diagnosis of genogroup II NLV infections.

1998 ◽  
Vol 36 (4) ◽  
pp. 1064-1069 ◽  
Author(s):  
James P. Brinker ◽  
Neil R. Blacklow ◽  
Mary K. Estes ◽  
Christine L. Moe ◽  
Kellogg J. Schwab ◽  
...  

Sera obtained from two groups of adult volunteers infected with Norwalk virus (NV) and two groups of patients involved in two natural outbreaks were tested for NV-reactive immunoglobulin M (IgM) by use of a monoclonal antibody, recombinant-antigen-based IgM capture enzyme immunoassay (EIA). No NV-reactive IgM was detected in the preinoculation sera of 15 volunteers, and 14 of 15 showed NV-reactive antibodies postinfection with NV. All of the volunteers showed IgG seroconversion to NV. In the outbreak studies, all 9 persons in one outbreak and 19 of 24 in another outbreak had NV-reactive IgM. In the first outbreak, only three of nine seroconverted to NV, which was likely due to late collection of acute-phase sera. In the second outbreak, 21 of 24 showed IgG seroconversion to NV. Sequencing of viruses isolated from five stool samples selected from those in the second outbreak showed that they were human calicivirus (HuCV) genogroup 1 viruses related, but not identical, to NV. In the volunteer studies, NV-reactive IgM was first detected 8 days postinoculation. The time of development of NV-reactive IgM antibodies in natural outbreaks was estimated to be similar to that found in the volunteer studies. Sera from three Hawaii virus-infected volunteers, four Snow Mountain virus patients, and 80 healthy individuals were negative for NV-reactive IgM, indicating test specificity for HuCV genogroup I infections. This capture IgM EIA is suitable for diagnosis of NV and other HuCV genogroup I infections and is especially useful when sera and fecal samples have not been collected early in the course of an outbreak.


Tick-borne encephalitis virus (TBEV) was isolated for the first time in Sweden in 1958 (from ticks and from 1 tick-borne encephalitis [TBE] patient).1 In 2003, Haglund and colleagues reported the isolation and antigenic and genetic characterization of 14 TBEV strains from Swedish patients (samples collected 1991–1994).2 The first serum sample, from which TBEV was isolated, was obtained 2–10 days after onset of disease and found to be negative for anti-TBEV immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA), whereas TBEV-specific IgM (and TBEV-specific immunoglobulin G/cerebrospinal fluid [IgG/CSF] activity) was demonstrated in later serum samples taken during the second phase of the disease.


2021 ◽  
Vol 22 (4) ◽  
pp. 2141
Author(s):  
Srinu Tumpara ◽  
Elena Korenbaum ◽  
Mark Kühnel ◽  
Danny Jonigk ◽  
Beata Olejnicka ◽  
...  

The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.


2003 ◽  
Vol 10 (2) ◽  
pp. 317-322 ◽  
Author(s):  
Angel Balmaseda ◽  
María G. Guzmán ◽  
Samantha Hammond ◽  
Guillermo Robleto ◽  
Carolina Flores ◽  
...  

ABSTRACT To evaluate alternative approaches to the serological diagnosis of dengue virus (DEN) infection, the detection of DEN-specific immunoglobulin M (IgM) and IgA antibodies in serum and saliva specimens was assessed in 147 patients with symptoms of DEN infection seen at the Ministry of Health in Nicaragua. Seventy-two serum samples were determined to be positive for anti-DEN antibodies by IgM capture enzyme-linked immunosorbent assay, the routine diagnostic procedure. Serum and saliva specimens were obtained from 50 healthy adults as additional controls. IgM was detected in the saliva of 65 of the 72 serum IgM-positive cases, 6 of the 75 serum IgM-negative cases, and none of the control group, resulting in a sensitivity of 90.3% and a specificity of 92.0% and demonstrating that salivary IgM is a useful diagnostic marker for DEN infection. Detection of IgA in serum may be another feasible alternative for the diagnosis of DEN infection, with serum IgA found in 68 (94.4%) of the IgM-positive cases. In contrast, detection of IgA in saliva was not found to be a useful tool for DEN diagnosis in the present study. Further studies of the kinetics of antibody detection in another set of 151 paired acute- and convalescent-phase serum samples showed that DEN-specific IgA antibodies were detected in more acute-phase samples than were IgM antibodies. Thus, we conclude that DEN-specific IgA in serum is a potential diagnostic target. Furthermore, given that saliva is a readily obtainable, noninvasive specimen, detection of DEN-specific salivary IgM should be considered a useful, cheaper diagnostic modality with similar sensitivity and specificity to IgM detection in serum.


2005 ◽  
Vol 73 (8) ◽  
pp. 4530-4538 ◽  
Author(s):  
Tamika Burns ◽  
Maria Abadi ◽  
Liise-anne Pirofski

ABSTRACT The human monoclonal antibody to serotype 8 pneumococcal capsular polysaccharide D11 [immunoglobulin M(κ)] protects wild-type and complement component 4 knockout (C4 KO) mice against lethal intratracheal challenge with serotype 8 pneumococcus, but it does not promote polymorphonuclear leukocyte (PMN)-mediated pneumococcal killing in vitro. In this study, we investigated the effect of D11 on the blood and lung bacterial burdens and the serum and lung expression of inflammatory chemokines and cytokines in an intratracheal challenge model with serotype 8 pneumococcus in C4 KO mice. Pneumococcus was not detected in the blood of D11-treated mice, whereas control mice had high-grade bacteremia with >107 CFU. Control mice had a >5-log increase in lung CFU and D11-treated mice manifested a nearly 3-log increase in lung CFU compared to the original inoculum 24 h after infection. Serum and lung levels of soluble macrophage inflammatory protein 2 (MIP-2) and interleulin-6 (IL-6) as measured by an enzyme-linked immunosorbent assay were lower in D11-treated mice than in control mice 24 h after infection. Real-time PCR was performed to examine lung mRNA chemokine and cytokine expression. The results showed that D11-treated mice had significantly less gamma interferon, MIP-2, IL-12, monocyte chemoattractant protein 1/JE, and tumor necrosis factor alpha expression than control mice 24 h after infection. Histopathology and immunohistochemical staining of lung tissues revealed that D11-treated mice had less inflammation, fewer PMNs, and less myeloperoxidase staining than control mice 24 h after infection. These findings suggest that the efficacy of certain serotype-specific antibodies against pneumococcal pneumonia could be associated with modulation of the lung inflammatory response and a reduction in host damage.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Chukiat Sirivichayakul ◽  
Kriengsak Limkittikul ◽  
Pornthep Chanthavanich ◽  
Sutee Yoksan ◽  
Anuttarasakdi Ratchatatat ◽  
...  

Abstract Background Dengue is an important mosquito-borne disease. There is currently only one licensed vaccine for dengue prevention. The vaccine provides higher efficacy in pre-vaccination dengue-seropositive persons but a higher risk of subsequent more severe dengue in dengue-seronegative persons. It is recommended that the dengue vaccine may be given in dengue-seropositive individuals or as mass vaccination without individual pre-vaccination screening in areas where the dengue seroprevalence is > 80% in children aged 9 years. We evaluated a dengue specific immunoglobulin G monoclonal antibody-based capture enzyme-linked immunosorbent assay (MAb-ELISA) in the diagnosis of previous dengue infection using serum samples from the cohort study in Ratchaburi Province, Thailand. Methods The MAb-ELISA was compared to 70% plaque reduction neutralization test (PRNT70) in 453 serum samples from children aged 3–11 years in Ratchaburi Province, Thailand. Results The sensitivity and specificity of MAb-ELISA at the positive to negative (P/N) ratio cut-off level of > 3 were both 0.91 in the diagnosis of previous dengue infection, compared to PRNT70. The false positivity was mainly in Japanese encephalitis (JE) seropositive subjects. Conclusions This research provides evidence that MAb-ELISA is useful for dengue seroprevalence study and dengue pre-vaccination screening. JE seropositivity was the major cause of false positive result in the study population.


1985 ◽  
Vol 31 (3) ◽  
pp. 268-275 ◽  
Author(s):  
Randall T. Irvin ◽  
Howard Ceri

Mice immunized with Formalin-fixed mucoid Pseudomonas aeruginosa cells developed an immune response directed, in part, towards the P. aeruginosa glycocalyx. The polyclonal mouse sera produced good immunofluorescent staining of the P. aeruginosa glycocalyx and cell surface. A library of 250 hybridoma cell lines which produced monoclonal antibodies directed against P. aeruginosa was established. Twelve clones (4.8%) produced antibody which reacted with alginate in an enzyme-linked immunosorbent assay (ELISA). Clone Ps 53 was chosen for further study, cloned, and an ascites tumor established. Clone Ps 53 was chosen for further study because the antibody produced demonstrated a specificity similar to that of a recently isolated heparin – rat-lung lectin which recognizes alginates of the Homma nontypable P. aeruginosa strains. The Ps 53 clone produced an immunoglobulin M which reacted with P. aeruginosa alginate and produced good immunofluorescent staining of the P. aeruginosa glycocalyx. The Ps 53 monoclonal antibody has an apparent specificity for L-guluronic residues in ELISA. Competitive binding studies with various alginates and monosaccharides suggest that the C6 carboxyl group of uronic acids are recognized by the antibody and that the antigen-binding site is fairly large and may recognize a particular sequence or epitope of alginic acid which is rich in L-guluronic acid. The Ps 53 monoclonal antibody did not react uniformily with all P. aeruginosa alginates but did react with all of the alginates of the Homma nontypable strains tested, suggesting that acetylation or various modifications found in P. aeruginosa alginates may interfere with antibody binding and define specific epitopes. The Ps 53 antibody also reacted with purified outer membrane, indicating that some alginate or L-guluronic acid is intimately associated with outer membrane.


Sign in / Sign up

Export Citation Format

Share Document