scholarly journals A Novel Mouse Monoclonal Antibody C42 against C-Terminal Peptide of Alpha-1-Antitrypsin

2021 ◽  
Vol 22 (4) ◽  
pp. 2141
Author(s):  
Srinu Tumpara ◽  
Elena Korenbaum ◽  
Mark Kühnel ◽  
Danny Jonigk ◽  
Beata Olejnicka ◽  
...  

The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.

2001 ◽  
Vol 69 (2) ◽  
pp. 1009-1015 ◽  
Author(s):  
Alan G. Barbour ◽  
Virgilio Bundoc

ABSTRACT The antigenic variation of the relapsing fever agent Borrelia hermsii is associated with changes in the expression of the Vlp and Vsp outer membrane lipoproteins. To investigate whether these serotype-defining proteins are the target of a neutralizing and protective antibody response, monoclonal antibodies were produced from spleens of infected mice just after clearance of serotype 7 cells from the blood. Two immunoglobulin M monoclonal antibodies, H7-7 and H7-12, were studied in detail. Both antibodies specifically agglutinated serotype 7 cells and inhibited their growth in vitro. Administered to mice before or after infection, both antibodies provided protection against infection or substantially reduced the number of spirochetes in the blood of mice after infection. Whereas antibody H7-12 bound to Vlp7 in Western blotting, enzyme-linked immunosorbent assay, and immunoprecipitation assays, as well as to whole cells in other immunoassays, antibody H7-7 only bound to wet, intact cells of serotype 7. Antibody H7-7 selected against cells expressing Vlp7 in vitro and in vivo, an indication that Vlp7 was a conformation-sensitive antigen for the antibody. Vaccination of mice with recombinant Vlp7 with adjuvant elicited antibodies that bound to fixed whole cells of serotype 7 and to Vlp7 in Western blots, but these antibodies did not inhibit the growth of serotype 7 in vitro and did not provide protection against an infectious challenge with serotype 7. The study established that a Vlp protein was the target of a neutralizing antibody response, and it also indicated that the conformation and/or the native topology of Vlp were important for eliciting that immunity.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1633-1643 ◽  
Author(s):  
Donald MacGlashan ◽  
Jane McKenzie-White ◽  
Kristine Chichester ◽  
Bruce S. Bochner ◽  
Frances M. Davis ◽  
...  

Abstract In vivo studies suggested the possibility of an IgE-dependent regulation of high-affinity (FcRI) IgE receptor expression on basophils. The current studies extend these observations to in vitro cultures of human basophils. Incubation of basophils for 3 to 4 weeks resulted in a slow dissociation of IgE antibody, during which time FcRI expression decreased, as measured by flow cytometry using the anti-FcRIα monoclonal antibody, 22E7, or by measuring FcRIα mass by Western blotting of whole-cell lysates. Culture of basophils with IgE resulted in upregulation of FcRIα expression by both flow cytometry and Western blotting of whole-cell lysates. Upregulation followed a linear time course during 2 weeks of culture. The relative increase in FcRIα density depended on the starting density; with starting densities of FcRIα of 10,000 to 170,000 per basophil, the upregulation varied 20- to 1.1-fold, respectively. Upregulation occurred in high-purity basophils, was not influenced by IgG at concentrations up to 1 mg/mL, and was inhibited by dimeric IgE. Heat-inactivated IgE was less effective and the monoclonal antibody CGP51901 that prevents IgE binding to FcRIα blocked the ability of IgE to induce upregulation. The dose-response curve for IgE-induced upregulation had an effective concentration50 of 230 ng/mL. Although the receptor through which IgE induces this upregulation is not yet known, several characteristics suggest that the upregulation is mediated by IgE interacting through FcRIα itself.


2005 ◽  
Vol 73 (8) ◽  
pp. 4530-4538 ◽  
Author(s):  
Tamika Burns ◽  
Maria Abadi ◽  
Liise-anne Pirofski

ABSTRACT The human monoclonal antibody to serotype 8 pneumococcal capsular polysaccharide D11 [immunoglobulin M(κ)] protects wild-type and complement component 4 knockout (C4 KO) mice against lethal intratracheal challenge with serotype 8 pneumococcus, but it does not promote polymorphonuclear leukocyte (PMN)-mediated pneumococcal killing in vitro. In this study, we investigated the effect of D11 on the blood and lung bacterial burdens and the serum and lung expression of inflammatory chemokines and cytokines in an intratracheal challenge model with serotype 8 pneumococcus in C4 KO mice. Pneumococcus was not detected in the blood of D11-treated mice, whereas control mice had high-grade bacteremia with >107 CFU. Control mice had a >5-log increase in lung CFU and D11-treated mice manifested a nearly 3-log increase in lung CFU compared to the original inoculum 24 h after infection. Serum and lung levels of soluble macrophage inflammatory protein 2 (MIP-2) and interleulin-6 (IL-6) as measured by an enzyme-linked immunosorbent assay were lower in D11-treated mice than in control mice 24 h after infection. Real-time PCR was performed to examine lung mRNA chemokine and cytokine expression. The results showed that D11-treated mice had significantly less gamma interferon, MIP-2, IL-12, monocyte chemoattractant protein 1/JE, and tumor necrosis factor alpha expression than control mice 24 h after infection. Histopathology and immunohistochemical staining of lung tissues revealed that D11-treated mice had less inflammation, fewer PMNs, and less myeloperoxidase staining than control mice 24 h after infection. These findings suggest that the efficacy of certain serotype-specific antibodies against pneumococcal pneumonia could be associated with modulation of the lung inflammatory response and a reduction in host damage.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 660-660
Author(s):  
Mark J. Levis ◽  
Amy Sexauer ◽  
Trivikram Rajkhowa ◽  
Donald Small ◽  
Michael J. Borowitz

Abstract Abstract 660 AML is characterized by abnormal proliferation of myeloid cells that have a block in differentiation. FLT3/ITD mutations are relatively common in AML, and previous in vitro studies have demonstrated that signaling from ITD-mutated FLT3 blocks myeloid differentiation through repression of CEBP/a. As part of an ongoing phase 2 trial, we treated 6 patients with FLT3/ITD AML who were refractory to either primary induction therapy or salvage therapy after relapse with the highly potent and selective FLT3 inhibitor AC220. At the start of therapy, all 6 patients had circulating blasts (mean 9864 blasts/mm3; median 2970) and the median blast percentage in the bone marrow was 71.5%. Western blotting revealed a high level of sustained in vivo FLT3 inhibition in all patients. By Day 8, no patient had detectable blasts in the peripheral blood. After 14 days of treatment with AC220, all 6 patients displayed striking differentiation to the myelocyte stage within the bone marrow. By light microscopic evaluation of bone marrow aspirates, myelocytes (promyelocytes, myelocytes, and metamyelocytes) increased from a median of 10.5% pre-treatment to 52% after 2 weeks. Most patients were neutropenic on Day 1 of treatment (mean 574, median 560 neutrophils/mm3), but rose to a mean of 3275 neutrophils/mm3 after 4–8 weeks of treatment (median time to peak 34 days). By Day 28 of treatment, marrows were most often still hypercellular, but consisted primarily of fully differentiated neutrophils. Marrow blasts were markedly reduced or absent by Day 28 in all 6 cases (mean 2.3%, median 1.5%). In all 6 patients the FLT3/ITD mutation originally detected at the beginning of treatment was present in the marrow and peripheral blood despite the absence of circulating blasts after the first week of therapy. The FLT3 mutant allelic ratio did not change between pre-therapy and Day 28. Neutrophils were isolated to homogeneity (confirmed by cytospin) from peripheral blood by double ficoll density centrifugation. Using genomic DNA obtained from these purified neutrophils, we confirmed by PCR that the FLT3/ITD mutation was present, at a similar ratio as compared with the pre-treatment blasts. However, there was no detectable expression of FLT3 either by RNA (quantitative PCR) or protein (western blotting and flow cytometry) in these neutrophils. The isolated neutrophils morphologically resemble normal neutrophils by light microscopy, and by flow cytometry they express the differentiation antigen CD15 and CD11b, and have lost expression of immature markers such as cKIT and CD34. Stimulation of these neutrophils by endotoxin results in normal respiratory burst activity, as measured by reduction of nitroblue tetrazolium. They also express lactoferrin and MMP-9, proteins typically expressed in mature neutrophils. Clinically, lung nodules and fever occurred in 3 of the 6 patients within 14 days of the peak neutrophil count. They were not treated with steroids, but rather with antibiotics, and in all cases resolved. Other patients on this trial have developed Sweet's syndrome during the neutrophil surge. CEBPa transcript levels in Molm14 cells (an AML cell line with a FLT3/ITD mutation) rose 3–5-fold over baseline following treatment with AC220. This is consistent with our previously published findings, and suggests at least one mechanism for the observed release of the differentiation block observed in the AC220-treated patients. These clinical and correlative laboratory results suggest that effective, sustained in vivo FLT3 inhibition in AML patients with FLT3/ITD mutations induces terminal differentiation in blasts in many ways similar to that seen with all trans retinoic acid in acute promyelocytic leukemia. Furthermore, these findings demonstrate the direct link between the growth factor receptor pathway and control of differentiation, and provide new insight into mechanisms of leukemogenesis. Disclosures: Levis: Ambit Biosciences, Inc: Consultancy.


2008 ◽  
Vol 13 (6) ◽  
pp. 494-503 ◽  
Author(s):  
Sang-Hyeup Lee ◽  
Jeong Hee Moon ◽  
Eun Ah Cho ◽  
Seong-Eon Ryu ◽  
Myung Kyu Lee

The factor-inhibiting hypoxia-inducible factor (FIH) hydroxylates the asparagine 803 (Asn803) residue of the hypoxia-inducible factor 1α (HIF-1α), and the modification abrogates the transcriptional activity of HIF-1α. Because FIH is more active on HIF-1α than prolyl hydroxylase domain proteins under hypoxic conditions, its inhibitors have potential to be developed as anti-ischemic drugs targeting normal cells stressed by hypoxia. In this study, the authors developed the first monoclonal antibody, SHN-HIF1α, specifically to Asn803 hydroxylated HIF-1α and a sensitive assay system for FIH inhibitors using the monoclonal antibody (Mab). SHN-HIF1α showed 740 times higher affinity to the Asn803 hydroxylated HIF-1α peptide than the unmodified one. An enzyme-linked immunosorbent assay—based system using SHN-HIF1α displayed at least 30 times more sensitivity than previous methods for screening FIH inhibitors and was easily applicable to develop a high-throughput screening system. SHN-HIF1α also showed an Asn803 hydroxylation-dependent specificity to HIF-1α in cells. Taken together, the results suggest that it may be used to analyze the in vivo and in vitro activities of FIH inhibitors. ( Journal of Biomolecular Screening 2008:494-503)


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5153-5153
Author(s):  
Anne-Charlotte Le Floch ◽  
Florence Orlanducci ◽  
Antoine Briantais ◽  
Aude Le Roy ◽  
Anne-Sophie Chretien ◽  
...  

Introduction: Vγ9Vδ2 T cells immunotherapy is an emerging strategy in acute myeloid leukemia (AML). Partial effects of phosphoantigens like zoledronate, prompted us to investigate other molecules. Using Vγ9Vδ2 T cells expanded from healthy volunteers, recent works of our team demonstrate that anti-BTN3A 20.1 agonist monoclonal antibody (mAb) improves Vγ9Vδ2 T cells cytotoxicity in vitro and in vivo, including in zoledronate resistant blasts. Efficacy of anti-BTN3A 20.1 agonist mAb remains undetermined using autologous Vγ9Vδ2 T cells and mechanism of its action on AML blasts is understudied. Material and methods: Expression of co-stimulatory molecules on surface of AML blasts and Vγ9Vδ2 T cells, from 37 PBMC of AML patients, was assessed by flow cytometry. Vγ9Vδ2 T cells expansion was realized from the same samples with zoledronate, and administrations of Il-2 and Il-15. Purity was assessed by flow cytometry at day 13. Degranulation assay was performed at day 14. Results: 20 degranulation assays were realized on successfully expanded Vγ9Vδ2 T cells (69% of analyzable samples). Degranulation with anti-BTN3A 20.1 agonist mAb was enhanced compared to zoledronate condition (p=0.0085) or negative control (p<0.0001). We also show a positive correlation between level of degranulation and expression of DNAM-1 on Vγ9Vδ2 T cells surface, exclusively under anti-BTN3A 20.1 agonist mAb treatment (rS=0.54; p=0.0134). Conversely, under zoledronate treatment, Vγ9Vδ2 T cells degranulation was positively correlated with expression of NKG2D on Vγ9Vδ2 T cells surface (rS=0.62; p=0.0099) and was inversely associated to their expression of PD-1 (p=0.0482). Conclusion: Efficacy of anti-BTN3A 20.1 agonist mAb on primary AML blasts is confirmed in an autologous setting. Degranulation seems to play a major role in enhancement of Vγ9Vδ2 T cells cytotoxicity under anti-BTN3A 20.1 agonist mAb treatment, where DNAM-1 could play a determinant role. An autologous strategy for Vγ9Vδ2 T cells may be studied and considered in AML patients, with potent extrapolation to γδ T cell therapy protocols in targeting strategies. Disclosures Vey: Novartis: Consultancy, Honoraria; Janssen: Honoraria. Olive:ImCheck Therapeutics: Consultancy, Equity Ownership, Patents & Royalties; GlaxoSmithKline: Patents & Royalties.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1633-1643 ◽  
Author(s):  
Donald MacGlashan ◽  
Jane McKenzie-White ◽  
Kristine Chichester ◽  
Bruce S. Bochner ◽  
Frances M. Davis ◽  
...  

In vivo studies suggested the possibility of an IgE-dependent regulation of high-affinity (FcRI) IgE receptor expression on basophils. The current studies extend these observations to in vitro cultures of human basophils. Incubation of basophils for 3 to 4 weeks resulted in a slow dissociation of IgE antibody, during which time FcRI expression decreased, as measured by flow cytometry using the anti-FcRIα monoclonal antibody, 22E7, or by measuring FcRIα mass by Western blotting of whole-cell lysates. Culture of basophils with IgE resulted in upregulation of FcRIα expression by both flow cytometry and Western blotting of whole-cell lysates. Upregulation followed a linear time course during 2 weeks of culture. The relative increase in FcRIα density depended on the starting density; with starting densities of FcRIα of 10,000 to 170,000 per basophil, the upregulation varied 20- to 1.1-fold, respectively. Upregulation occurred in high-purity basophils, was not influenced by IgG at concentrations up to 1 mg/mL, and was inhibited by dimeric IgE. Heat-inactivated IgE was less effective and the monoclonal antibody CGP51901 that prevents IgE binding to FcRIα blocked the ability of IgE to induce upregulation. The dose-response curve for IgE-induced upregulation had an effective concentration50 of 230 ng/mL. Although the receptor through which IgE induces this upregulation is not yet known, several characteristics suggest that the upregulation is mediated by IgE interacting through FcRIα itself.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 942-951 ◽  
Author(s):  
Robert Rieben ◽  
Anja Roos ◽  
Yvonne Muizert ◽  
Caroline Tinguely ◽  
Arnout F. Gerritsen ◽  
...  

An important antiinflammatory mechanism of intravenous immunoglobulin preparations (IVIG) is their ability to block complement activation. The purpose of this study was to compare the complement-inhibitory activity of four IVIG preparations differing in isotype composition. The preparations were: (1) IVIgG (48 g/L IgG, 2 g/L IgA; Intraglobin F); (2) Pentaglobin (38 g/L IgG, 6 g/L IgM, 6 g/L IgA); (3) IVIgM (35 g/L IgM, 12 g/L IgA, 3 g/L IgG); and (4) IVIgA (41 g/L IgA, 9 g/L IgG), all from Biotest Pharma GmbH, Dreieich, Germany. Their complement inhibitory activity was assessed in vitro by measurement of the blocking of C1q-, C4-, and C3 deposition on solid-phase aggregated rabbit IgG by enzyme-linked immunosorbent assay (ELISA). Complement inhibition in this ELISA was best for IVIgM, followed by Pentaglobin and IVIgG; IVIgA did not exhibit an inhibitory effect. Control experiments with excess concentrations of C1q as well as with C1q-depleted serum showed that the inhibitory effects of IVIG were not caused by complement activation and thus, consumption, but that C4 and C3 were scavenged by IgM and to a lesser extent by IgG. These results were confirmed in vivo in the rat anti-Thy 1 nephritis model, in which a single dose of 500 mg/kg of IVIgM prevented C3-, C6-, and C5b-9 deposition in the rat glomeruli, whereas the effect of IVIgG was much less pronounced. Reduction of complement deposition was paralleled by a diminished albuminuria, which was completely absent in the IVIgM-treated rats. IVIgM and to a lesser extent IVIgG also prevented rat C3 deposition on cultured rat glomerular mesangial cells in vitro, but did not influence anti-Thy 1 binding. Neither IVIgM nor Pentaglobin nor IVIgG negatively affected in vitro phagocytosis of Escherichia coli (E coli) by human granulocytes. In conclusion, we have shown that IgM enrichment of IVIG preparations enhances their effect to prevent the inflammatory effects of complement activation.


2021 ◽  
Vol 9 (2) ◽  
pp. e002026
Author(s):  
Daniele Caracciolo ◽  
Caterina Riillo ◽  
Andrea Ballerini ◽  
Giuseppe Gaipa ◽  
Ludovic Lhermitte ◽  
...  

BackgroundT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a poor cure rate for relapsed/resistant patients. Due to the lack of T-cell restricted targetable antigens, effective immune-therapeutics are not presently available and the treatment of chemo-refractory T-ALL is still an unmet clinical need. To develop novel immune-therapy for T-ALL, we generated an afucosylated monoclonal antibody (mAb) (ahuUMG1) and two different bispecific T-cell engagers (BTCEs) against UMG1, a unique CD43-epitope highly and selectively expressed by T-ALL cells from pediatric and adult patients.MethodsUMG1 expression was assessed by immunohistochemistry (IHC) on a wide panel of normal tissue microarrays (TMAs), and by flow cytometry on healthy peripheral blood/bone marrow-derived cells, on 10 different T-ALL cell lines, and on 110 T-ALL primary patient-derived cells. CD43-UMG1 binding site was defined through a peptide microarray scanning. ahuUMG1 was generated by Genetic Glyco-Engineering technology from a novel humanized mAb directed against UMG1 (huUMG1). BTCEs were generated as IgG1-(scFv)2 constructs with bivalent (2+2) or monovalent (2+1) CD3ε arms. Antibody dependent cellular cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) and redirected T-cell cytotoxicity assays were analysed by flow cytometry. In vivo antitumor activity of ahUMG1 and UMG1-BTCEs was investigated in NSG mice against subcutaneous and orthotopic xenografts of human T-ALL.ResultsAmong 110 T-ALL patient-derived samples, 53 (48.1%) stained positive (24% of TI/TII, 82% of TIII and 42.8% of TIV). Importantly, no expression of UMG1-epitope was found in normal tissues/cells, excluding cortical thymocytes and a minority (<5%) of peripheral blood T lymphocytes. ahUMG1 induced strong ADCC and ADCP on T-ALL cells in vitro, which translated in antitumor activity in vivo and significantly extended survival of treated mice. Both UMG1-BTCEs demonstrated highly effective killing activity against T-ALL cells in vitro. We demonstrated that this effect was specifically exerted by engaged activated T cells. Moreover, UMG1-BTCEs effectively antagonized tumor growth at concentrations >2 log lower as compared with ahuUMG1, with significant mice survival advantage in different T-ALL models in vivo.ConclusionAltogether our findings, including the safe UMG1-epitope expression profile, provide a framework for the clinical development of these innovative immune-therapeutics for this still orphan disease.


2007 ◽  
Vol 81 (15) ◽  
pp. 8315-8324 ◽  
Author(s):  
John V. Williams ◽  
Zhifeng Chen ◽  
Gabriella Cseke ◽  
David W. Wright ◽  
Christopher J. Keefer ◽  
...  

ABSTRACT Human metapneumovirus (hMPV) is a recently discovered paramyxovirus that is a major cause of lower-respiratory-tract disease. hMPV is associated with more severe disease in infants and persons with underlying medical conditions. Animal studies have shown that the hMPV fusion (F) protein alone is capable of inducing protective immunity. Here, we report the use of phage display technology to generate a fully human monoclonal antibody fragment (Fab) with biological activity against hMPV. Phage antibody libraries prepared from human donor tissues were selected against recombinant hMPV F protein with multiple rounds of panning. Recombinant Fabs then were expressed in bacteria, and supernatants were screened by enzyme-linked immunosorbent assay and immunofluorescent assays. A number of Fabs that bound to hMPV F were isolated, and several of these exhibited neutralizing activity in vitro. Fab DS7 neutralized the parent strain of hMPV with a 60% plaque reduction activity of 1.1 μg/ml and bound to hMPV F with an affinity of 9.8 ×10−10 M, as measured by surface plasmon resonance. To test the in vivo activity of Fab DS7, groups of cotton rats were infected with hMPV and given Fab intranasally 3 days after infection. Nasal turbinates and lungs were harvested on day 4 postinfection and virus titers determined. Animals treated with Fab DS7 exhibited a >1,500-fold reduction in viral titer in the lungs, with a modest 4-fold reduction in the nasal tissues. There was a dose-response relationship between the dose of DS7 and virus titer. Human Fab DS7 may have prophylactic or therapeutic potential against severe hMPV infection.


Sign in / Sign up

Export Citation Format

Share Document