scholarly journals Tree shrew cells transduced with human CD4 and CCR5 support early steps of HIV-1 replication, but viral infectivity is restricted by APOBEC3

2021 ◽  
Author(s):  
Meng-Ting Luo ◽  
Dan Mu ◽  
Xiang Yang ◽  
Rong-Hua Luo ◽  
Hong-Yi Zheng ◽  
...  

The host range of human immunodeficiency virus type 1 (HIV-1) is narrow. Therefore, using ordinary animal models to study HIV-1 replication, pathogenesis, and therapy is impractical. The lack of applicable animal models for HIV-1 research spurred our investigation on whether tree shrews ( Tupaia belangeri chinensis ), which are susceptible to many types of human viruses, can act as an animal model for HIV-1. Here, we report that tree shrew primary cells are refractory to wild-type HIV-1 but support the early replication steps of HIV-1 pseudotyped with the vesicular stomatitis virus glycoprotein envelope (VSV-G), which can bypass entry receptors. The exogenous expression of human CD4 renders the tree shrew cell line infectable to X4-tropic HIV-1 IIIB , suggesting that tree shrew CXCR4 is a functional HIV-1 co-receptor. However, tree shrew cells did not produce infectious HIV-1 progeny virions, even with the human CD4 receptor. Subsequently, we identified tree shrew (ts) apolipoprotein B editing catalytic polypeptide 3 (tsAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity, with virus infectivity reduced 10–1 000-fold. Unlike human APOBEC3G, the tsA3Z2c-Z1b protein was not degraded by the HIV-1 viral infectivity factor (Vif), but markedly restricted HIV-1 replication through mutagenicity and reverse transcription inhibition. The pooled knockout of tsA3Z2c-Z1b partially restored the infectivity of the HIV-1 progeny. This work suggests that tsAPOBEC3 proteins serve as an additional barrier to the development of HIV-1 tree shrew models, even when virus entry is overcome by exogenous expression of human CD4. IMPORTANCE The development of animal models is critical for studying human diseases and their pathogenesis and for evaluating drug and vaccine efficacy. For improved AIDS research, the ideal animal model of HIV-1 infection should be a small laboratory mammal that closely mimics virus replication in humans. Tree shrews exhibit considerable potential as animal models for the study of human diseases and therapeutic responses. Here, we report that human-CD4-expressing tree shrew cells support the early steps of HIV-1 replication and that tree shrew CXCR4 is a functional co-receptor of HIV-1. However, tree shrew cells harbor additional restrictions that lead to the production of HIV-1 virions with low infectivity. Thus, the tsAPOBEC3 proteins are partial barriers to developing tree shrews as an HIV-1 model. Our results provide insight into the genetic basis of HIV inhibition in tree shrews and build a foundation for the establishment of gene-edited tree shrew HIV-1-infected models.

2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Lu ◽  
Hongmei Peng ◽  
Liping Zhong ◽  
Pan Wu ◽  
Jian He ◽  
...  

Animal disease models are necessary in medical research, and an appropriate animal model is of great importance for studies about the prevention or treatment of cancer. The most important thing in the selection of animal models is to consider the similarity between animals and humans. The tree shrew (Tupaia belangeri) is a squirrel-like mammal which placed in the order Scandentia. Whole-genome sequencing has revealed that tree shrews are extremely similar to primate and humans than to rodents, with many highly conserved genes, which makes the data from studies that use tree shrews as models more convincing and the research outcomes more easily translatable. In tumor research, tree shrews are often used as animal models for hepatic and mammary cancers. As research has progressed, other types of tree shrew tumor models have been developed and exhibit clinical manifestations similar to those of humans. Combining the advantages of both rodents and primates, the tree shrew is expected to be the most powerful animal model for studying tumors.


2022 ◽  
Vol 12 ◽  
Author(s):  
Wei Xia ◽  
Honglin Chen ◽  
Yiwei Feng ◽  
Nan Shi ◽  
Zongjian Huang ◽  
...  

Epstein-Barr virus (EBV) is a human herpesvirus that latently infects approximately 95% of adults and is associated with a spectrum of human diseases including Infectious Mononucleosis and a variety of malignancies. However, understanding the pathogenesis, vaccines and antiviral drugs for EBV-associated disease has been hampered by the lack of suitable animal models. Tree shrew is a novel laboratory animal with a close phylogenetic relationship to primates, which is a critical advantage for many animal models for human disease, especially viral infections. Herein, we first identified the key residues in the CR2 receptor that bind the gp350 protein and facilitate viral entry. We found that tree shrew shares 100% sequence identity with humans in these residues, which is much higher than rabbits (50%) and rats (25%). In vitro analysis showed that B lymphocytes of tree shrews are susceptible to EBV infection and replication, as well as EBV-enhanced cell proliferation. Moreover, results of in vivo experiments show that EBV infection in tree shrews resembles EBV infection in humans. The infected animals exhibited transient fever and loss of weight accompanied by neutropenia and high viremia levels during the acute phase of the viral infection. Thereafter, tree shrews acted as asymptomatic carriers of the virus in most cases that EBV-related protein could be detected in blood and tissues. However, a resurgence of EBV infection occurred at 49 dpi. Nanopore transcriptomic sequencing of peripheral blood in EBV-infected animals revealed the dynamic changes in biological processes occurring during EBV primary infection. Importantly, we find that neutrophil function was impaired in tree shrew model as well as human Infectious Mononucleosis datasets (GSE85599 and GSE45918). In addition, retrospective case reviews suggested that neutropenia may play an important role in EBV escaping host innate immune response, leading to long-term latent infection. Our findings demonstrated that tree shrew is a suitable animal model to evaluate the mechanisms of EBV infection, and for developing vaccines and therapeutic drugs against EBV.


Author(s):  
Mohammad Enamul Hoque Kayesh ◽  
Kyoko Tsukiyama-Kohara

AbstractDengue, a rapidly spreading mosquito-borne human viral disease caused by dengue virus (DENV), is a public health concern in tropical and subtropical areas due to its expanding geographical range. DENV can cause a wide spectrum of illnesses in humans, ranging from asymptomatic infection or mild dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Dengue is caused by four DENV serotypes; however, dengue pathogenesis is complex and poorly understood. Establishing a useful animal model that can exhibit dengue-fever-like signs similar to those in humans is essential to improve our understanding of the host response and pathogenesis of DENV. Although several animal models, including mouse models, non-human primate models, and a recently reported tree shrew model, have been investigated for DENV infection, animal models with clinical signs that are similar to those of DF in humans have not yet been established. Although animal models are essential for understanding the pathogenesis of DENV infection and for drug and vaccine development, each animal model has its own strengths and limitations. Therefore, in this review, we provide a recent overview of animal models for DENV infection and pathogenesis, focusing on studies of the antibody-dependent enhancement (ADE) effect in animal models.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Na-Na Zhang ◽  
Li Zhang ◽  
Yong-Qiang Deng ◽  
Yue Feng ◽  
Feng Ma ◽  
...  

ABSTRACT Animal models of Zika virus (ZIKV) infection have recently been established in mice, guinea pigs, and nonhuman primates. Tree shrews (Tupaia belangeri) are an emerging experimental animal in biomedical applications, but their susceptibility to ZIKV infection has not been explored. In the present study, we show that subcutaneous inoculation of ZIKV led to rapid viremia and viral secretion in saliva, as well as to typical dermatological manifestations characterized by massive diffuse skin rash on the trunk. Global transcriptomic sequencing of peripheral blood mononuclear cells isolated from ZIKV-infected animals revealed systematic gene expression changes related to the inflammatory response and dermatological manifestations. Importantly, ZIKV infection readily triggered the production of high-titer neutralizing antibodies, thus preventing secondary homologous infection in tree shrews. However, neonatal tree shrews succumbed to ZIKV challenge upon intracerebral infection. The tree shrew model described here recapitulates the most common dermatological manifestations observed in ZIKV-infected patients and may greatly facilitate the elucidation of ZIKV pathogenesis and the development of novel vaccines and therapeutics. IMPORTANCE The reemergence of Zika virus (ZIKV) has caused a global public health crisis since 2016, and there are currently no vaccines or antiviral drugs to prevent or treat ZIKV infection. However, considerable advances have been made in understanding the biology and pathogenesis of ZIKV infection. In particular, various animal models have been successfully established to mimic ZIKV infection and its associated neurological diseases and to evaluate potential countermeasures. However, the clinical symptoms in these mouse and nonhuman primate models are different from the common clinical manifestations seen in human ZIKV patients; in particular, dermatological manifestations are rarely recapitulated in these animal models. Here, we developed a new animal model of ZIKV infection in tree shrews, a rat-sized, primate-related mammal. In vitro and in vivo characterization of ZIKV infection in tree shrews established a direct link between ZIKV infection and the immune responses and dermatological manifestations. The tree shrew model described here, as well as other available animal models, provides a valuable platform to study ZIKV pathogenesis and to evaluate vaccines and therapeutics.


ILAR Journal ◽  
2021 ◽  
Author(s):  
Margaret Landi ◽  
Jeffrey Everitt ◽  
B Berridge

Abstract There is no prescribed stage or standardized point at which an animal model protocol is reviewed for reproducibility and translatability. The method of review for a reproducible and translatable study is not consistently documented in peer literature, and this is a major challenge for those working with animal models of human diseases. If the study is ill designed, it is impossible to perform an accurate harm/benefit analysis. In addition, there may be an ethical challenge if the work is not reproducible and translatable. Animal welfare regulations and other documents of control clearly state the role of the Institutional Animal Care and Use Committees are to look at science justification within the context of animal welfare. This article, concentrating on models not governed by regulations, outlines issues and offers recommendations for refining animal model review with a goal to improve study reproducibility and translatability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liming Jiang ◽  
Caixia Lu ◽  
Qiangming Sun

Dengue virus is a significant public health threat worldwide; however, the pathogenesis of dengue disease remains poorly understood due to lack of appropriate small animal models. Tree shrews are an emerging experimental animal model for the study of human diseases due to their resemblance of genetic characteristics to primate animals. Herein we report that dengue infection in tree shrews elicits resemble clinical symptoms as in humans. Dengue fever (△2°C> normal body temperature) developed in ~22% healthy Chinese tree shrews from 2 through 33 days after infection with a low dose (1 ∗ 104 PFU/animal) of dengue virus serotype 2 or 3 intravenously or subcutaneously. The dengue genomic RNA and neutralizing antibodies were detected in ~78% of animals at days 7 and 15 post infection respectively. The serum levels of liver enzymes including aspartate transaminase, alanine aminotransferase and alkaline phosphatase were elevated with peaks at day 7 after infection. Modest thrombocytopenia and a slight decrease in the white blood cell count were observed. Intriguingly, although viral RNA was barely detectable in the liver by 48 days after infection, it was still evident in the brain. The intra-brain bleeding lesions in the intravenous infection group were more severe than those in the subcutaneous infection group. Our data demonstrate that primary dengue virus infection in tree shrews causes resemble clinical disease as in humans and thus tree shrews may be a suitable model for the study of dengue disease pathogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daoqun Li ◽  
Zulqarnain Baloch ◽  
Yang Zhao ◽  
Lei Bai ◽  
Xing Wang ◽  
...  

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the most common cause of Kaposi’s sarcoma (KS) and other malignant growths in humans. However, the lack of a KSHV-infected small animal model has hampered understanding of the mechanisms of KSHV infection, virus replication, pathogenesis, and persistence. This study was designed to explore the susceptibility of tree shrews as a possible KSHV-infected small animal model. A recombinant GFP (latent)/RFP (lytic)-positive rKSHV.219 strain was used to infect primary cells cultured from different tissues of tree shrews as an in vitro model and adult tree shrews as an in vivo model. KSHV latent nuclear antigen (LANA) and DNA were successfully detected in primary cells of tree shrews. Among them, tree shrew kidney epithelial cells (TSKEC) were the most susceptible cells to KSHV infection compared to other cells. KSHV genomic DNA, mRNA, and KSHV-specific proteins were readily detected in the TSKEC cultured up to 32 dpi. Moreover, KSHV DNA and mRNA transcription were also readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of tree shrews infected with KSHV. Haematoxylin and eosin (HE) staining showed lymphocyte infiltration, lymphoid tissue focal aggregation, alveolar wall thickening, hepatocyte edema, hepatic necrosis in the spleen, lung, and liver of KSHV-infected animals. Additionally, immune-histochemical (IHC) staining showed that LANA or ORF62-positive cells were present in the spleen, lung, liver, and kidney of KSHV-infected tree shrews. Here, we have successfully established in vitro and in vivo KSHV latent infection in tree shrews. This small animal model is not only useful for studying the pathogenesis of KSHV in vivo but can also be a useful model to study transmission routes of viral infection and a useful platform to characterize the novel therapeutics against KSHV.


Author(s):  
Zulqarnain Baloch ◽  
Zhili Shen ◽  
Li Zhang ◽  
Yue Feng ◽  
Daoqun Li ◽  
...  

Sexual transmission of Zika Virus (ZIKV) elevates the risk of its dissemination in the female reproductive tract and causes a serious threat to the fetus. However, the available animal models are not appropriate to investigate sexual transmission, dynamics of ZIKV infection, replication, and shedding. The use of tree shrew as a small animal model of ZIKV vaginal infection was assessed in this study. A total of 23 sexually mature female tree shrews were infected with ZIKV GZ01 via the intravaginal route. There was no significant difference in change of body weight, and the temperature between ZIKV infected and control animals. Viral RNA loads were detected in blood, saliva, urine, and vaginal douching. ZIKV RNA was readily detected in vaginal lavage of 22 animals (95.65%, 22/23) at 1 dpi, and viral load ranged from 104.46 to 107.35 copies/ml, and the peak of viral load appeared at 1 dpi. The expression of key inflammatory genes, such as IL6, 8, CCL5, TNF-a, and CXCL9, was increased in the spleen of ZIKV infected animals. In the current study, female tree shrews have been successfully infected with ZIKV through the vaginal route for the first time. Interestingly, at first, ZIKV replicates at the local site of infection and then spreads throughout the host body to develop a robust systemic infection and mounted a protective immune response. This small animal model is not only valuable for exploring ZIKV sexual transmission and may also help to explain the cause of debilitating manifestations of the fetus in vivo.


Author(s):  
J. P. Brunschwig ◽  
R. M. McCombs ◽  
R. Mirkovic ◽  
M. Benyesh-Melnick

A new virus, established as a member of the herpesvirus group by electron microscopy, was isolated from spontaneously degenerating cell cultures derived from the kidneys and lungs of two normal tree shrews. The virus was found to replicate best in cells derived from the homologous species. The cells used were a tree shrew cell line, T-23, which was derived from a spontaneous soft tissue sarcoma. The virus did not multiply or did so poorly for a limited number of passages in human, monkey, rodent, rabbit or chick embryo cells. In the T-23 cells, the virus behaved as members of the subgroup B of herpesvirus, in that the virus remained primarily cell associated.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


Sign in / Sign up

Export Citation Format

Share Document