scholarly journals Cleavage Map and Proteolytic Processing of the Murine Norovirus Nonstructural Polyprotein in Infected Cells

2006 ◽  
Vol 80 (16) ◽  
pp. 7816-7831 ◽  
Author(s):  
Stanislav V. Sosnovtsev ◽  
Gaël Belliot ◽  
Kyeong-OK Chang ◽  
Victor G. Prikhodko ◽  
Larissa B. Thackray ◽  
...  

ABSTRACT Murine norovirus (MNV) is presently the only member of the genus Norovirus in the Caliciviridae that can be propagated in cell culture. The goal of this study was to elucidate the proteolytic processing strategy of MNV during an authentic replication cycle in cells. A proteolytic cleavage map of the ORF1 polyprotein was generated, and the virus-encoded 3C-like (3CL) proteinase (Pro) mediated cleavage at five dipeptide cleavage sites, 341E/G342, Q705/N706, 870E/G871, 994E/A995, and 1177Q/G1178, that defined the borders of six proteins with the gene order p38.3 (Nterm)-p39.6 (NTPase)-p18.6-p14.3 (VPg)-p19.2 (Pro)-p57.5 (Pol). Bacterially expressed MNV 3CL Pro was sufficient to mediate trans cleavage of the ORF1 polyprotein containing the mutagenized Pro sequence into products identical to those observed during cotranslational processing of the authentic ORF1 polyprotein in vitro and to those observed in MNV-infected cells. Immunoprecipitation and Western blot analysis of proteins produced in virus-infected cells demonstrated efficient cleavage of the proteinase-polymerase precursor. Evidence for additional processing of the Nterm protein in MNV-infected cells by caspase 3 was obtained, and Nterm sequences 118DRPD121 and 128DAMD131 were mapped as caspase 3 cleavage sites by site-directed mutagenesis. The availability of the MNV nonstructural polyprotein cleavage map in concert with a permissive cell culture system should facilitate studies of norovirus replication.

2000 ◽  
Vol 81 (11) ◽  
pp. 2771-2781 ◽  
Author(s):  
Aiming Wang ◽  
Hélène Sanfaçon

Tomato ringspot nepovirus RNA-1-encoded polyprotein (P1) contains the domains for the putative NTP-binding protein, VPg, 3C-like protease and a putative RNA-dependent RNA polymerase in its C-terminal region. The N-terminal region of P1, with a coding capacity for a protein (or a precursor) of 67 kDa, has not been characterized. Using partial cDNA clones, it is shown that the 3C-like protease can process the N-terminal region of P1 at a novel cleavage site in vitro, allowing the release of two proteins, X1 (located at the N terminus of P1) and X2 (located immediately upstream of the NTB domain). P1 precursors in which the protease was inactive or absent were not cleaved by exogenously added protease, suggesting that P1 processing was predominantly in cis. Results from site-directed mutagenesis of putative cleavage sites suggest that dipeptides Q423/G and Q620/G are the X1-X2 and X2-NTB cleavage sites, respectively. The putative X1 protein contains a previously identified alanine-rich sequence which is present in nepoviruses but not in the related comoviruses. The putative X2 protein contains a region with similarity to the comovirus 32 kDa protease co-factor (the only mature protein released from the N terminus of comovirus P1 polyproteins) and to the corresponding region of other nepovirus P1 polyproteins. These results raise the possibility that the presence of two distinct protein domains in the N-terminal part of the P1 polyprotein may be a common feature of nepoviruses.


2002 ◽  
Vol 76 (12) ◽  
pp. 6323-6331 ◽  
Author(s):  
Maxim Y. Balakirev ◽  
Michel Jaquinod ◽  
Arthur L. Haas ◽  
Jadwiga Chroboczek

ABSTRACT The invasion strategy of many viruses involves the synthesis of viral gene products that mimic the functions of the cellular proteins and thus interfere with the key cellular processes. Here we show that adenovirus infection is accompanied by an increased ubiquitin-cleaving (deubiquitinating) activity in the host cells. Affinity chromatography on ubiquitin aldehyde (Ubal), which was designed to identify the deubiquitinating proteases, revealed the presence of adenovirus L3 23K proteinase (Avp) in the eluate from adenovirus-infected cells. This proteinase is known to be necessary for the processing of viral precursor proteins during virion maturation. We show here that in vivo Avp deubiquitinates a number of cellular proteins. Analysis of the substrate specificity of Avp in vitro demonstrated that the protein deubiquitination by this enzyme could be as efficient as proteolytic processing of viral proteins. The structural model of the Ubal-Avp interaction revealed some similarity between S1-S4 substrate binding sites of Avp and ubiquitin hydrolases. These results may reflect the acquisition of an advantageous property by adenovirus and may indicate the importance of ubiquitin pathways in viral infection.


1998 ◽  
Vol 72 (3) ◽  
pp. 2265-2271 ◽  
Author(s):  
Xiao Tao Lu ◽  
Amy C. Sims ◽  
Mark R. Denison

ABSTRACT The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro that contained one or more 3CLpro cleavage sites, and cleavage of these substrates by recombinant 3CLpro in vitro confirmed that amino-terminal cleavage of p1a-22 occurred at Gln_Ser4014. We demonstrated that the carboxy-terminal cleavage of the p1a-22 protein occurred at Gln_Asn4208, a sequence that had not been predicted as a site for cleavage by MHV 3CLpro. Our results demonstrate the usefulness of recombinant MHV 3CLpro in identifying and confirming cleavage sites within the gene 1 polyprotein. Based on our results, we predict that at least seven mature proteins are processed from the ORF 1a polyprotein by 3CLpro and suggest that additional noncanonical cleavage sites may be used by 3CLpro during processing of the gene 1 polyprotein.


2020 ◽  
Vol 139 ◽  
pp. 51-68 ◽  
Author(s):  
SE Godwin ◽  
RN Morrison ◽  
G Knowles ◽  
MC Cornish ◽  
D Hayes ◽  
...  

Since 2012, an orthomyxo-like virus has been consistently linked to epizootics in marine farmed Atlantic salmon in Tasmania, Australia. Here we describe the properties of the virus, designated the pilchard orthomyxovirus (POMV), in cell culture and present data verifying its direct role in a disease of Atlantic salmon. In infected cells, viral RNA was detectable in both the nucleus and cytoplasm, consistent with the replication cycle of an orthomyxovirus. Viral replication in vitro was temperature-dependent (within a range of 10-20°C), and yields of virus were typically in excess of 107 TCID50 ml-1. In controlled infection trials, cell culture-derived POMV produced significant morbidity in Atlantic salmon fry, pre-smolt and post-smolt. In all cases, the development of disease was rapid, with moribund fish detected within 5 d of direct exposure to POMV, and maximum cumulative morbidity occurring within 4 wk. The experimentally infected fish developed a characteristic suite of gross and microscopic pathological changes, which were consistent with those observed in Atlantic salmon overtly affected by POMV-associated disease on sea farms. These included necrotic lesions across multiple organs that were directly associated with the presence of the virus. Together, our observations indicate that POMV is an endemic virus likely transmitted from wild fish to farmed Atlantic salmon in Tasmania. The virus is pathogenic to Atlantic salmon in freshwater and marine environments and causes a disease that we have named salmon orthomyxoviral necrosis.


1999 ◽  
Vol 73 (3) ◽  
pp. 2027-2037 ◽  
Author(s):  
Leonie C. van Dinten ◽  
Sietske Rensen ◽  
Alexander E. Gorbalenya ◽  
Eric J. Snijder

ABSTRACT The open reading frame (ORF) 1b-encoded part of the equine arteritis virus (EAV) replicase is expressed by ribosomal frameshifting during genome translation, which results in the production of an ORF1ab fusion protein (345 kDa). Four ORF1b-encoded processing products, nsp9 (p80), nsp10 (p50), nsp11 (p26), and nsp12 (p12), have previously been identified in EAV-infected cells (L. C. van Dinten, A. L. M. Wassenaar, A. E. Gorbalenya, W. J. M. Spaan, and E. J. Snijder, J. Virol. 70:6625–6633, 1996). In the present study, the generation of these four nonstructural proteins was shown to be mediated by the nsp4 serine protease, which is the main viral protease (E. J. Snijder, A. L. M. Wassenaar, L. C. van Dinten, W. J. M. Spaan, and A. E. Gorbalenya, J. Biol. Chem. 271:4864–4871, 1996). Mutagenesis of candidate cleavage sites revealed that Glu-2370/Ser, Gln-2837/Ser, and Glu-3056/Gly are the probable nsp9/10, nsp10/11, and nsp11/12 junctions, respectively. Mutations which abolished ORF1b protein processing were introduced into a recently developed infectious cDNA clone (L. C. van Dinten, J. A. den Boon, A. L. M. Wassenaar, W. J. M. Spaan, and E. J. Snijder, Proc. Natl. Acad. Sci. USA 94:991–997, 1997). An analysis of these mutants showed that the selective blockage of ORF1b processing affected different stages of EAV reproduction. In particular, the mutant with the nsp10/11 cleavage site mutation Gln-2837→Pro displayed an unusual phenotype, since it was still capable of RNA synthesis but was incapable of producing infectious virus.


2007 ◽  
Vol 81 (13) ◽  
pp. 6798-6806 ◽  
Author(s):  
Tomoichiro Oka ◽  
Mami Yamamoto ◽  
Masaru Yokoyama ◽  
Satoko Ogawa ◽  
Grant S. Hansman ◽  
...  

ABSTRACT A common feature of caliciviruses is the proteolytic processing of the viral polyprotein catalyzed by the viral 3C-like protease encoded in open reading frame 1 (ORF1). Here we report the identification and structural characterization of the protease domains and amino acid residues in sapovirus (SaV) and feline calicivirus (FCV). The in vitro expression and processing of a panel of truncated ORF1 polyproteins and corresponding mutant forms showed that the functional protease domain is 146 amino acids (aa) in SaV and 154 aa in FCV. Site-directed mutagenesis of the protease domains identified four amino acid residues essential to protease activities: H31, E52, C116, and H131 in SaV and H39, E60, C122, and H137 in FCV. A computer-assisted structural analysis showed that despite high levels of diversity in the primary structures of the protease domains in the family Caliciviridae, the configurations of the H, E, C, and H residues are highly conserved, with these residues positioned closely along the inner surface of the potential binding cleft for the substrate. These results strongly suggest that the H, E, C, and H residues are involved in the formation of a conserved catalytic surface of the SaV and FCV 3C-like proteases.


2004 ◽  
Vol 72 (10) ◽  
pp. 6061-6067 ◽  
Author(s):  
Raffaella Mele ◽  
Maria Angeles Gomez Morales ◽  
Fabio Tosini ◽  
Edoardo Pozio

ABSTRACT We studied apoptosis in a human ileocecal adenocarcinoma tumor cell line (HCT-8) infected with Cryptosporidium parvum, from 2 to 72 h postinfection (h.p.i.). At 2 h.p.i., the percentage of annexin V-positive cells in the cell culture had increased to 10% compared to 2.5% in noninfected control culture; sorted infected cells expressed mRNA of FasL, the active form of caspase 3, and high caspase 3 activity, whereas the noninfected neighboring cells sorted from the same culture showed no signs of apoptosis. At 24 h.p.i., the percentages of early (annexin V positive) and late (DNA fragment) apoptotic cells were 13 and 2%, respectively, in the entire cell culture, and these percentages were not statistically significant in comparison with those from noninfected control cultures. At this time, sorted infected cells expressed the inactive form of caspase 3, a low caspase 3 activity, and the antiapoptotic protein Bcl-2. Noninfected cells sorted from the same culture showed expression of the active form of caspase 3, a moderate caspase 3 activity, and no Bcl-2 expression. At 48 h.p.i., the percentages of early and late apoptotic cells and caspase 3 activity had increased in the total cell culture, and both sorted infected and noninfected cells showed the active form of caspase 3. These results show that C. parvum, depending on its developmental stage, can inhibit (at the trophozoite stage) or promote (at the sporozoite and merozoite stages) host cell apoptosis, suggesting that it is able to interact with and regulate the host-cell gene expression.


2005 ◽  
Vol 86 (6) ◽  
pp. 1771-1784 ◽  
Author(s):  
D. Laine ◽  
J. M. Bourhis ◽  
S. Longhi ◽  
M. Flacher ◽  
L. Cassard ◽  
...  

Measles virus (MV) nucleoprotein (N) is a cytosolic protein that is released into the extracellular compartment after apoptosis and/or secondary necrosis of MV-infected cells in vitro. Thus, MV-N becomes accessible to inhibitory cell-surface receptors: FcγRIIB and an uncharacterized nucleoprotein receptor (NR). MV-N is composed of two domains: NCORE (aa 1–400) and NTAIL (aa 401–525). To assess the contribution of MV-N domains and of these two receptors in suppression of cell proliferation, a human melanoma HT144 cell line expressing (HT144IIB1) or lacking FcγRIIB1 was used as a model. Specific and exclusive NCORE–FcγRIIB1 and NTAIL–NR interactions were shown. Moreover, NTAIL binding to human NR predominantly led to suppression of cell proliferation by arresting cells in the G0/G1 phases of the cell cycle, rather than to apoptosis. NCORE binding to HT144IIB1 cells primarily triggered caspase-3 activation, in contrast to HT144IIB1/IC− cells lacking the FcγRIIB1 intra-cytoplasmic tail, thus demonstrating the specific inhibitory effect of the NCORE–FcγRIIB1 interaction. MV-N- and NCORE-mediated apoptosis through FcγRIIB1 was inhibited by the pan-caspase inhibitor zVAD-FMK, indicating that apoptosis was dependent on caspase activation. By using NTAIL deletion proteins, it was also shown that the region of NTAIL responsible for binding to human NR and for cell growth arrest maps to one of the three conserved boxes (Box1, aa 401–420) found in N of Morbilliviruses. This work unveils novel mechanisms by which distinct domains of MV-N may display different immunosuppressive activities, thus contributing to our comprehension of the immunosuppressive state associated with MV infection. Finally, MV-N domains may be good tools to target tumour cell proliferation and/or apoptosis.


2001 ◽  
Vol 82 (7) ◽  
pp. 1785-1790 ◽  
Author(s):  
Karma Carrier ◽  
Yu Xiang ◽  
Hélène Sanfaçon

The proteinase of Tomato ringspot virus (genus Nepovirus) is responsible for proteolytic cleavage of the RNA2-encoded polyprotein (P2) at two cleavage sites, allowing definition of the domains for the movement protein (MP) and coat protein. In this study, we have characterized a third cleavage site in the N-terminal region of P2 using an in vitro processing assay and partial cDNA clones. Results from site-directed mutagenesis of putative cleavage sites suggest that cleavage occurs at dipeptide Q301/G. Cleavage at this site is predicted to result in the release of two proteins from the N-terminal region of P2: a 34 kDa protein located at the N terminus of P2 (assuming translation initiation at the first AUG codon) and a 71 kDa protein located immediately upstream of the MP domain. In contrast, only one protein domain is present in the equivalent region of the P2 polyprotein of other characterized nepoviruses.


1999 ◽  
Vol 112 (23) ◽  
pp. 4475-4482 ◽  
Author(s):  
A. Sgorbissa ◽  
R. Benetti ◽  
S. Marzinotto ◽  
C. Schneider ◽  
C. Brancolini

Apoptosis is characterized by proteolysis of specific cellular proteins by a family of cystein proteases known as caspases. Gas2, a component of the microfilament system, is cleaved during apoptosis and the cleaved form specifically regulates microfilaments and cell shape changes. We now demonstrate that Gas2 is a substrate of caspase-3 but not of caspase-6. Proteolytic processing both in vitro and in vivo is dependent on aspartic residue 279. Gas2 cleavage was only partially impaired in apoptotic MCF-7 cells which lack caspase-3, thus indicating that different caspases can process Gas2 in vivo. In vitro Gas2 was processed, albeit with low affinity, by caspase-7 thus suggesting that this caspase could be responsible for the incomplete Gas2 processing observed in UV treated MCF-7 cells. In vivo proteolysis of Gas2 was detected at an early stage of the apoptotic process when the cells are still adherent on the substrate and it was coupled to the specific rearrangement of the microfilament characterizing cell death. Finally we also demonstrated that Gas2 in vitro binds to F-actin, but this interaction was unaffected by the caspase-3 dependent proteolytic processing.


Sign in / Sign up

Export Citation Format

Share Document