scholarly journals Unique mutations in the MHV macrodomain differentially attenuate virus replication, indicating multiple roles for the macrodomain in coronavirus replication

2021 ◽  
Author(s):  
Lynden S. Voth ◽  
Joseph J. O’Connor ◽  
Catherine M. Kerr ◽  
Ethan Doerger ◽  
Nancy Schwarting ◽  
...  

All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in non-structural protein 3 (nsp3) which binds and hydrolyzes mono-ADP-ribose (MAR) covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutation of a highly conserved asparagine residue, which makes contact with the distal ribose of ADP-ribose. To determine if additional Mac1 activities contribute to CoV replication, we compared the replication of murine hepatitis virus (MHV) Mac1 mutants, D1329A and N1465A, to the previously mentioned asparagine mutant, N1347A. These residues contact the adenine and proximal ribose in ADP-ribose, respectively. N1465A had no effect on MHV replication or pathogenesis, while D1329A and N1347A both replicated poorly in bone-marrow derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo. Interestingly, D1329A was also significantly more attenuated than N1347A in all cell lines tested. Conversely, D1329A retained some ability to block IFN-β transcript accumulation compared to N1347A, indicating that these mutations have different effects on Mac1 functions. Combining these two mutations resulted in a virus that was unrecoverable, suggesting that the combined activities of Mac1 may be essential for MHV replication. We conclude that Mac1 has multiple functions that promote the replication of MHV, and that these results provide further evidence that Mac1 could be a prominent target for anti-CoV therapeutics. IMPORTANCE In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate, and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within non-structural protein 3. It has received significant attention as a potential drug target as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the functions of Mac1 during infection remain largely unknown. Here, using targeted mutations in different regions of Mac1, we found that Mac1 has multiple functions that promote the replication of MHV, a model CoV, and therefore is more important for MHV replication than previously appreciated. These results will help guide the discovery of these novel functions of Mac1 and the development of inhibitory compounds targeting this domain.

2021 ◽  
Author(s):  
Lynden S Voth ◽  
Joseph J O'Connor ◽  
Catherine M Kerr ◽  
Ethan Doerger ◽  
Nancy Schwarting ◽  
...  

All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in non-structural protein 3 (nsp3) which binds and hydrolyzes ADP-ribose covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutant of a highly conserved asparagine-to-alanine mutation, which is known to largely eliminate Mac1 ADP-ribosylhydrolase activity. To determine if Mac1 ADP-ribose binding separately contributes to CoV replication, we compared the replication of a murine hepatitis virus (MHV) Mac1 mutant predicted to dramatically reduce ADP-ribose binding, D1329A, to the previously mentioned asparagine mutant, N1347A. D1329A and N1347A both replicated poorly in bone-marrow derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo. However, D1329A was significantly more attenuated than N1347A in all cell lines tested that were susceptible to MHV infection. In addition, D1329A retained some ability to block IFN-β transcript accumulation compared to N1347A, indicating that these two mutants impacted distinct Mac1 functions. Mac1 mutants predicted to eliminate both binding and hydrolysis activities were unrecoverable, suggesting that the combined activities of Mac1 may be essential for MHV replication. We conclude that Mac1 has multiple roles in promoting the replication of MHV, and that these results provide further evidence that Mac1 could be a prominent target for anti-CoV therapeutics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhan Yin ◽  
Nils Burger ◽  
Duvaraka Kula-Alwar ◽  
Dunja Aksentijević ◽  
Hannah R. Bridges ◽  
...  

AbstractMitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia–reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the “deactive” state, usually formed only after prolonged inactivity. Despite its tendency to adopt the “deactive” state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


2001 ◽  
Vol 75 (6) ◽  
pp. 2792-2802 ◽  
Author(s):  
Dawn K. Krueger ◽  
Sean M. Kelly ◽  
Daniel N. Lewicki ◽  
Rosanna Ruffolo ◽  
Thomas M. Gallagher

ABSTRACT The prototype JHM strain of murine hepatitis virus (MHV) is an enveloped, RNA-containing coronavirus that has been selected in vivo for extreme neurovirulence. This virus encodes spike (S) glycoproteins that are extraordinarily effective mediators of intercellular membrane fusion, unique in their ability to initiate fusion even without prior interaction with the primary MHV receptor, a murine carcinoembryonic antigen-related cell adhesion molecule (CEACAM). In considering the possible role of this hyperactive membrane fusion activity in neurovirulence, we discovered that the growth of JHM in tissue culture selected for variants that had lost murine CEACAM-independent fusion activity. Among the collection of variants, mutations were identified in regions encoding both the receptor-binding (S1) and fusion-inducing (S2) subunits of the spike protein. Each mutation was separately introduced into cDNA encoding the prototype JHM spike, and the set of cDNAs was expressed using vaccinia virus vectors. The variant spikes were similar to that of JHM in their assembly into oligomers, their proteolysis into S1 and S2 cleavage products, their transport to cell surfaces, and their affinity for a soluble form of murine CEACAM. However, these tissue culture-adapted spikes were significantly stabilized as S1-S2 heteromers, and their entirely CEACAM-dependent fusion activity was delayed or reduced relative to prototype JHM spikes. The mutations that we have identified therefore point to regions of the S protein that specifically regulate the membrane fusion reaction. We suggest that cultured cells, unlike certain in vivo environments, select for S proteins with delayed, CEACAM-dependent fusion activities that may increase the likelihood of virus internalization prior to the irreversible uncoating process.


Haematologica ◽  
2021 ◽  
Author(s):  
Osheiza Abdulmalik ◽  
Noureldien H. E. Darwish ◽  
Vandhana Muralidharan-Chari ◽  
Maii Abu Taleb ◽  
Shaker A. Mousa

Sickle cell disease (SCD) is an autosomal recessive genetic disease caused by a single point mutation, resulting in abnormal sickle hemoglobin (HbS). During hypoxia or dehydration, HbS polymerizes to form insoluble aggregates and induces sickling of red blood cells (RBCs). RBC sickling increases adhesiveness of RBCs to alter the rheological properties of the blood and triggers inflammatory responses, leading to hemolysis and vaso-occlusive crisis sequelae. Unfractionated heparin (UFH) and low-molecular weight heparins (LMWH) have been suggested as treatments to relieve coagulation complications in SCD. However, they are associated with bleeding complications after repeated dosing. An alternative sulfated nonanticoagulant heparin derivative (S-NACH) was previously reported to have none to low systemic anticoagulant activity and no bleeding side effects, and it interfered with P-selectindependent binding of sickle cells to endothelial cells, with concomitant decrease in the levels of adhesion biomarkers in SCD mice. S-NACH has been further engineered and structurally enhanced to bind with and modify HbS to directly inhibit sickling, thus employing a multimodal approach. Here, we show that S-NACH can (i) directly engage in Schiff-base reactions with HbS to decrease RBC sickling under both normoxia and hypoxia in vitro, ii) prolong the survival of SCD mice under hypoxia, and (iii) regulate the altered steady state levels of pro- and antiinflammatory cytokines. Thus, our proof of concept in vitro and in vivo preclinical studies demonstrate that the multimodal S-NACH is a highly promising candidate for development into an improved and optimized alternative to LMWHs for the treatment of patients with SCD.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Ana R. Pereira ◽  
Jen Hsin ◽  
Ewa Król ◽  
Andreia C. Tavares ◽  
Pierre Flores ◽  
...  

ABSTRACT A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZ G193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZ G193D filaments are more twisted and shorter than wild-type filaments. In vivo , M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. IMPORTANCE The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Yingying Mao ◽  
Xuejun Wang ◽  
Renhe Yan ◽  
Wei Hu ◽  
Andrew Li ◽  
...  

2007 ◽  
Vol 81 (11) ◽  
pp. 5637-5648 ◽  
Author(s):  
Renaud Burrer ◽  
Benjamin W. Neuman ◽  
Joey P. C. Ting ◽  
David A. Stein ◽  
Hong M. Moulton ◽  
...  

ABSTRACT The recent emergence of novel pathogenic human and animal coronaviruses has highlighted the need for antiviral therapies that are effective against a spectrum of these viruses. We have used several strains of murine hepatitis virus (MHV) in cell culture and in vivo in mouse models to investigate the antiviral characteristics of peptide-conjugated antisense phosphorodiamidate morpholino oligomers (P-PMOs). Ten P-PMOs directed against various target sites in the viral genome were tested in cell culture, and one of these (5TERM), which was complementary to the 5′ terminus of the genomic RNA, was effective against six strains of MHV. Further studies were carried out with various arginine-rich peptides conjugated to the 5TERM PMO sequence in order to evaluate efficacy and toxicity and thereby select candidates for in vivo testing. In uninfected mice, prolonged P-PMO treatment did not result in weight loss or detectable histopathologic changes. 5TERM P-PMO treatment reduced viral titers in target organs and protected mice against virus-induced tissue damage. Prophylactic 5TERM P-PMO treatment decreased the amount of weight loss associated with infection under most experimental conditions. Treatment also prolonged survival in two lethal challenge models. In some cases of high-dose viral inoculation followed by delayed treatment, 5TERM P-PMO treatment was not protective and increased morbidity in the treated group, suggesting that P-PMO may cause toxic effects in diseased mice that were not apparent in the uninfected animals. However, the strong antiviral effect observed suggests that with further development, P-PMO may provide an effective therapeutic approach against a broad range of coronavirus infections.


Glia ◽  
1989 ◽  
Vol 2 (2) ◽  
pp. 85-93 ◽  
Author(s):  
M.F. van Berlo ◽  
R. Warringa ◽  
G. Wolswijk ◽  
M. Lopes-Cardozo

2005 ◽  
Vol 79 (24) ◽  
pp. 15064-15073 ◽  
Author(s):  
Lubna Kazi ◽  
Arjen Lissenberg ◽  
Richard Watson ◽  
Raoul J. de Groot ◽  
Susan R. Weiss

ABSTRACT Murine hepatitis virus (MHV) infection provides a model system for the study of hepatitis, acute encephalitis, and chronic demyelinating disease. The spike glycoprotein, S, which mediates receptor binding and membrane fusion, plays a critical role in MHV pathogenesis. However, viral proteins other than S also contribute to pathogenicity. The JHM strain of MHV is highly neurovirulent and expresses a second spike glycoprotein, the hemagglutinin esterase (HE), which is not produced by MHV-A59, a hepatotropic but only mildly neurovirulent strain. To investigate a possible role for HE in MHV-induced neurovirulence, isogenic recombinant MHV-A59 viruses were generated that produced either (i) the wild-type protein, (ii) an enzymatically inactive HE protein, or (iii) no HE at all (A. Lissenberg, M. M. Vrolijk, A. L. W. van Vliet, M. A. Langereis, J. D. F. de Groot-Mijnes, P. J. M. Rottier, and R. J. de Groot, J. Virol. 79:15054-15063, 2005 [accompanying paper]). A second, mirror set of recombinant viruses was constructed in which, in addition, the MHV-A59 S gene had been replaced with that from MHV-JHM. The expression of HE in combination with A59 S did not affect the tropism, pathogenicity, or spread of the virus in vivo. However, in combination with JHM S, the expression of HE, regardless of whether it retained esterase activity or not, resulted in increased viral spread within the central nervous system and in increased neurovirulence. Our findings suggest that the properties of S receptor utilization and/or fusogenicity mainly determine organ and host cell tropism but that HE enhances the efficiency of infection and promotes viral dissemination, at least in some tissues, presumably by serving as a second receptor-binding protein.


2000 ◽  
Vol 74 (23) ◽  
pp. 11027-11039 ◽  
Author(s):  
Eran Bacharach ◽  
Jason Gonsky ◽  
Kimona Alin ◽  
Marianna Orlova ◽  
Stephen P. Goff

ABSTRACT A yeast two-hybrid screen for cellular proteins that interact with the murine leukemia virus (MuLV) Gag protein resulted in the identification of nucleolin, a host protein known to function in ribosome assembly. The interacting fusions contained the carboxy-terminal 212 amino acids of nucleolin [Nuc(212)]. The nucleocapsid (NC) portion of Gag was necessary and sufficient to mediate the binding to Nuc(212). The interaction of Gag with Nuc(212) could be demonstrated in vitro and was manifested in vivo by the NC-dependent incorporation of Nuc(212) inside MuLV virions. Overexpression of Nuc(212), but not full-length nucleolin, potently and specifically blocked MuLV virion assembly and/or release. A mutant of MuLV, selected to specifically disrupt the binding to Nuc(212), was found to be severely defective for virion assembly. This mutant harbors a single point mutation in capsid (CA) adjacent to the CA-NC junction, suggesting a role for this region in Moloney MuLV assembly. These experiments demonstrate that selection for proteins that bind assembly domain(s) can yield potent inhibitors of virion assembly. These experiments also raise the possibility that a nucleolin-Gag interaction may be involved in virion assembly.


Sign in / Sign up

Export Citation Format

Share Document