scholarly journals Mouse Cytomegalovirus m153 Protein Stabilizes Expression of the Inhibitory NKR-P1B Ligand Clr-b

2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Oscar A. Aguilar ◽  
Isabella S. Sampaio ◽  
Mir Munir A. Rahim ◽  
Jackeline D. Samaniego ◽  
Mulualem E. Tilahun ◽  
...  

ABSTRACT Natural killer (NK) cells are a subset of innate lymphoid cells (ILC) capable of recognizing stressed and infected cells through multiple germ line-encoded receptor-ligand interactions. Missing-self recognition involves NK cell sensing of the loss of host-encoded inhibitory ligands on target cells, including MHC class I (MHC-I) molecules and other MHC-I-independent ligands. Mouse cytomegalovirus (MCMV) infection promotes a rapid host-mediated loss of the inhibitory NKR-P1B ligand Clr-b (encoded by Clec2d) on infected cells. Here we provide evidence that an MCMV m145 family member, m153, functions to stabilize cell surface Clr-b during MCMV infection. Ectopic expression of m153 in fibroblasts augments Clr-b cell surface levels. Moreover, infections using m153-deficient MCMV mutants (Δm144-m158 and Δm153) show an accelerated and exacerbated Clr-b downregulation. Importantly, enhanced loss of Clr-b during Δm153 mutant infection reverts to wild-type levels upon exogenous m153 complementation in fibroblasts. While the effects of m153 on Clr-b levels are independent of Clec2d transcription, imaging experiments revealed that the m153 and Clr-b proteins only minimally colocalize within the same subcellular compartments, and tagged versions of the proteins were refractory to coimmunoprecipitation under mild-detergent conditions. Surprisingly, the Δm153 mutant possesses enhanced virulence in vivo, independent of both Clr-b and NKR-P1B, suggesting that m153 potentially targets additional host factors. Nevertheless, the present data highlight a unique mechanism by which MCMV modulates NK ligand expression. IMPORTANCE Cytomegaloviruses are betaherpesviruses that in immunocompromised individuals can lead to severe pathologies. These viruses encode various gene products that serve to evade innate immune recognition. NK cells are among the first immune cells that respond to CMV infection and use germ line-encoded NK cell receptors (NKR) to distinguish healthy from virus-infected cells. One such axis that plays a critical role in NK recognition involves the inhibitory NKR-P1B receptor, which engages the host ligand Clr-b, a molecule commonly lost on stressed cells (“missing-self”). In this study, we discovered that mouse CMV utilizes the m153 glycoprotein to circumvent host-mediated Clr-b downregulation, in order to evade NK recognition. These results highlight a novel MCMV-mediated immune evasion strategy.

Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 298
Author(s):  
Arnika K. Wagner ◽  
Ulf Gehrmann ◽  
Stefanie Hiltbrunner ◽  
Valentina Carannante ◽  
Thuy T. Luu ◽  
...  

Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3488-3488
Author(s):  
Stefanie Raab ◽  
Korbinian Nepomuk Kropp ◽  
Alexander Steinle ◽  
Lothar Kanz ◽  
Hans-Georg Kopp ◽  
...  

Abstract NK cells play an important role in the immunosurveillance of tumor cells. The mechanisms leading to NK cell activation are described by the ‘missing-self’ and “induced-self’ hypotheses, implying that cells with low or absent expression of MHC class I and stress-induced expression of ligands for activating receptors like e.g. NKG2D (NKG2DL) are preferentially recognized and eliminated by NK cells. Besides the direct interaction with their target cells, NK activity is further influenced by various other hematopoietic cells. In mouse models, thrombocytopenia impairs metastasis, and this is reversed by additional depletion of NK cells. However, the knowledge regarding the molecular mechanisms by which platelets influence NK cells is still fragmentary. We recently reported that release of TGF-β by platelets upon their interaction with (metastasizing) tumor cells downmodulates NKG2D on NK cells (Kopp et al., Cancer Res. 2009; Placke et al., J Innate Immun. 2011). Moreover, platelets transfer “healthy” MHC class I to the tumor cell surface. Thus, platelets may facilitate metastasis by interfering with both, “induced and missing self’ NK cell recognition. Here we provide evidence for a yet unknown mechanism by which platelets further impair NKG2D-mediated immunosurveillance. Tumor cells were incubated with platelets from healthy donors resulting in coating of tumor cells and activation of the platelets, or treated with platelet-derived soluble factors (releasate) obtained either by tumor cell-induced platelet activation (TCIPA) or the platelet agonist thrombin. Presence of platelet derived factors derived either from coating of tumor cells or contained in platelet releasate substantially reduced NKG2DL surface expression on tumor cells. This was paralleled by enhanced levels of soluble NKG2DL in culture supernatants, indicating that platelet-derived factors mediate NKG2DL shedding from the tumor cell surface. Diminished NKG2DL surface expression resulted in decreased NKG2D-dependent cytotoxicity of NK cells as revealed by blocking experiments using NKG2D antibody and NKG2DL-specific F(ab)2 fragments targeting the specific modulated NKG2DL. Our data thus identify induction of NKG2DL shedding as novel mechanism by which interaction of platelets with metastasizing tumor cells impairs NK cell immunosurveillance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (3) ◽  
pp. 592-602 ◽  
Author(s):  
Simon Bélanger ◽  
Megan M. Tu ◽  
Mir Munir Ahmed Rahim ◽  
Ahmad B. Mahmoud ◽  
Rajen Patel ◽  
...  

Abstract Ly49-mediated recognition of MHC-I molecules on host cells is considered vital for natural killer (NK)–cell regulation and education; however, gene-deficient animal models are lacking because of the difficulty in deleting this large multigene family. Here, we describe NK gene complex knockdown (NKCKD) mice that lack expression of Ly49 and related MHC-I receptors on most NK cells. NKCKD NK cells exhibit defective killing of MHC-I–deficient, but otherwise normal, target cells, resulting in defective rejection by NKCKD mice of transplants from various types of MHC-I–deficient mice. Self–MHC-I immunosurveillance by NK cells in NKCKD mice can be rescued by self–MHC-I–specific Ly49 transgenes. Although NKCKD mice display defective recognition of MHC-I–deficient tumor cells, resulting in decreased in vivo tumor cell clearance, NKG2D- or antibody-dependent cell-mediated cytotoxicity–induced tumor cell cytotoxicity and cytokine production induced by activation receptors was efficient in Ly49-deficient NK cells, suggesting MHC-I education of NK cells is a single facet regulating their total potential. These results provide direct genetic evidence that Ly49 expression is necessary for NK-cell education to self–MHC-I molecules and that the absence of these receptors leads to loss of MHC-I–dependent “missing-self” immunosurveillance by NK cells.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


1993 ◽  
Vol 178 (3) ◽  
pp. 961-969 ◽  
Author(s):  
M S Malnati ◽  
P Lusso ◽  
E Ciccone ◽  
A Moretta ◽  
L Moretta ◽  
...  

Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.


2009 ◽  
Vol 206 (3) ◽  
pp. 515-523 ◽  
Author(s):  
Agnieszka Kielczewska ◽  
Michal Pyzik ◽  
Tianhe Sun ◽  
Astrid Krmpotic ◽  
Melissa B. Lodoen ◽  
...  

Natural killer (NK) cells are crucial in resistance to certain viral infections, but the mechanisms used to recognize infected cells remain largely unknown. Here, we show that the activating Ly49P receptor recognizes cells infected with mouse cytomegalovirus (MCMV) by a process that requires the presence of H2-Dk and the MCMV m04 protein. Using H2 chimeras between H2-Db and -Dk, we demonstrate that the H2-Dk peptide-binding platform is required for Ly49P recognition. We identified m04 as a viral component necessary for recognition using a panel of MCMV-deletion mutant viruses and complementation of m04-deletion mutant (Δm04) virus infection. MA/My mice, which express Ly49P and H2-Dk, are resistant to MCMV; however, infection with Δm04 MCMV abrogates resistance. Depletion of NK cells in MA/My mice abrogates their resistance to wild-type MCMV infection, but does not significantly affect viral titers in mice infected with Δm04 virus, implicating NK cells in host protection through m04-dependent recognition. These findings reveal a novel mechanism of major histocompatability complex class I–restricted recognition of virally infected cells by an activating NK cell receptor.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4926-4926
Author(s):  
Xiangshan Cao ◽  
Jianyong Li

Abstract The KIRs were knew as natural killer (NK) cell inhibitory receptors with specificity for HLA molecules on their cellular targets. We investigated NK cell activation on the number of matches between cell killer immunoglobulin-like receptor (KIR) gene and HLA-Cw, and the level of inhibitory KIRs expressed on NK cell surface and the cytotoxicity of NK cell against AML leukemic cells in vitro. NK cell were isolated and purified from 27 healthy donors by isolation kit, Target cells were blasts derived from bone marrow of 30 patients with AML.Inhibitory KIRs expression knew as CD158a, CD158b was analyzed by flow cytometry to estimate the percentage of NK cells that could be inhibited by the HLA-Cw ligands..KIR and HLA gene typing were performed by PCR –SSP. from donors and patients respectively. NK cytotoxicity against AML leukemic cells demonstrated by MTT which showed the correlation between NK cytotoxicity and the number of KIR/HLA matches. the NK-susceptible K562 cell line which lacks HLA class I expression, was used as a positive control target in all cytotoxicity assays, autologous non-NK cell was used as negative control target cell. the cytotoxicity assays was performed in E:T 50:1 20:1 10:1 5:1 2.5:1. Results demonstrated the less number of KIR/HLA-Cw matches, the more NK cells are activated..0 match of NK cell/target cell KIR/HLA-Cw, cytotoxicity was (50.66±8.40)%,1 match and 2 matches were (38.28±6.71)%, (19.74±4.15)%, F=20.226, P<0.001. NK cells expressed KIRs also had relationship with cytotoxicity, inhibitory KIRs expressed >50%, the cytotoxicity is 10%, inhibitory KIRs expressed 20%–50%, the cytotoxicity is 20%, inhibitory KIRs <25%, the cytotoxicity is 55%, F=16.276,p<0.001. Therefore these data indicate NK cell kill AML leukemic cells mechanism follow KIR/HLA-Cw mismatch theory, the level of inhibitory KIRs expressed on NK cell surface showed the percentage of NK cells that could be inhibited by the HLA-Cw ligands. Key words: KIR NK cell CD158 HLA-Cw


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2517-2517 ◽  
Author(s):  
Zachary B. Davis ◽  
Todd Lenvik ◽  
Louis Hansen ◽  
Martin Felices ◽  
Sarah Cooley ◽  
...  

Abstract Natural Killer (NK) cells, a critical component of the immune response to viral infection, recognize and destroy cells with diminished expression of major histocompatibility class-I (MHC-I) molecules and expression of ligands for activating NK receptors such as NKG2D. Down-modulation of MHC-I is a hallmark of viral infection, as it allows infected cells to evade a CD8 T-cell response. Stalling of the cell cycle to enhance viral replication induces NK activation ligands such as the NKG2D ligands unique long binding proteins (ULBP)-1 and -2 which could trigger NK destruction of infected cells. Unfortunately, incomplete down-modulation of MHC-I by HIV leaves HLA-C on the cell surface, which inhibits the majority of NK cells from killing infected targets. CD16, the low affinity Fc receptor, is the most potent NK cell activating receptor. It mediates antibody dependent cell-mediated cytotoxicity (ADCC), and can override inhibition by MHC-I. We designed a series of bi-specific killer-engager (BiKE) constructs to direct NK cell ADCC against an HIV-infected target. We linked the Fab portions of broadly neutralizing (bn)Abs to a novel llama-derived nanobody EF91 that binds CD16 at high affinity and signals strong activation. We chose to use EF91 as its structure is unique compared to the use of a single chain variable fragment (scFv). Rather than being composed of a variable heavy (VH) and variable light (VL) chain, the nanobody is composed of a single variable heavy (VHH) domain. A distinct advantage to using a CD16 nanobody over a scFv is in the purity of the generated product. During protein folding it is not uncommon for the wrong VH to associate with the wrong VL; the result of which is a nonfunctional product. Since the nanobody is single VHH, and does not require association with another domain, there is less risk of a misfolded product. Nanobodies are also known to have similar, if not increased, affinity for their target molecules. In the case of EF91, this may result in more robust activation of NK cells than with a traditional scFv. We tested a BiKE constructed with the bnAb, VRC01, which recognizes the CD4 binding domain of HIV-Env. The specificity of our novel anti-CD16 nanobody was demonstrated by binding of our BiKE construct to CD16+ NK cells (Figure 1A). Function of our BiKE construct was tested by incubating it with chronically infected T-cell lines (HIV-IIIB and ACH-2) or with their respective uninfected counterparts (H9 and CEM). We only observed binding to infected cells (Figure 1B), demonstrating HIV-Env binding specificity to the HIV strains ACH-2 (LAI strain) and HIV-IIIB. The ability of the anti-Env BiKE construct to mediate ADCC and IFNγ production was tested against two uninfected CD4 T-cell lines or their infected counterparts. While NK cells degranulated when incubated with the infected cell lines (50% against HIV-IIIB and 20% against LAI), this response was markedly enhanced when co-incubated with the HIV-Env specific BiKE (80% against HIV-IIIB and 60% against LAI) (Figure 1C). Furthermore, the HIV-Env BiKE enhanced IFNγ production against HIV-infected T-cell lines compared to responses in the absence of BiKE (28% against HIV-IIIB compared to 36% with BiKE; 15% against ACH-2 compared to 37% with BiKE) (Figure 1D). Our data demonstrate that a BiKE construct containing the Fab of an HIV bnAb and an anti-CD16 component can eliminate HIV-infected targets that express the HIV-envelope on their surface. The reservoir of latently infected CD4 T cells lack expression of any recognizable virus protein on the cell surface, we plan to combine our BiKE strategy with cellular activation using IL-15. Alternatively, we can construct a tri-specific engager (TriKE) with an IL-15 segment that may activate CD4 T cells while enhancing NK cell killing. Disclosures Cooley: Fate Therapeutics: Research Funding. Vallera:Oxis Biotech: Consultancy, Membership on an entity's Board of Directors or advisory committees. Miller:Fate Therapeutics: Consultancy, Research Funding; Oxis Biotech: Consultancy, Other: SAB.


Blood ◽  
2010 ◽  
Vol 115 (7) ◽  
pp. 1354-1363 ◽  
Author(s):  
Jonathan Richard ◽  
Sardar Sindhu ◽  
Tram N. Q. Pham ◽  
Jean-Philippe Belzile ◽  
Éric A. Cohen

AbstractHIV up-regulates cell-surface expression of specific ligands for the activating NKG2D receptor, including ULBP-1, -2, and -3, but not MICA or MICB, in infected cells both in vitro and in vivo. However, the viral factor(s) involved in NKG2D ligand expression still remains undefined. HIV-1 Vpr activates the DNA damage/stress-sensing ATR kinase and promotes G2 cell-cycle arrest, conditions known to up-regulate NKG2D ligands. We report here that HIV-1 selectively induces cell-surface expression of ULBP-2 in primary CD4+ T lymphocytes by a process that is Vpr dependent. Importantly, Vpr enhanced the susceptibility of HIV-1–infected cells to NK cell–mediated killing. Strikingly, Vpr alone was sufficient to up-regulate expression of all NKG2D ligands and thus promoted efficient NKG2D-dependent NK cell–mediated killing. Delivery of virion-associated Vpr via defective HIV-1 particles induced analogous biologic effects in noninfected target cells, suggesting that Vpr may act similarly beyond infected cells. All these activities relied on Vpr ability to activate the ATR-mediated DNA damage/stress checkpoint. Overall, these results indicate that Vpr is a key determinant responsible for HIV-1–induced up-regulation of NKG2D ligands and further suggest an immunomodulatory role for Vpr that may not only contribute to HIV-1–induced CD4+ T-lymphocyte depletion but may also take part in HIV-1–induced NK-cell dysfunction.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 994-1002 ◽  
Author(s):  
Anouk Caraux ◽  
Nayoung Kim ◽  
Sarah E. Bell ◽  
Simona Zompi ◽  
Thomas Ranson ◽  
...  

AbstractPhospholipase C-γ2 (PLC-γ2) is a key component of signal transduction in leukocytes. In natural killer (NK) cells, PLC-γ2 is pivotal for cellular cytotoxicity; however, it is not known which steps of the cytolytic machinery it regulates. We found that PLC-γ2-deficient NK cells formed conjugates with target cells and polarized the microtubule-organizing center, but failed to secrete cytotoxic granules, due to defective calcium mobilization. Consequently, cytotoxicity was completely abrogated in PLC-γ2-deficient cells, regardless of whether targets expressed NKG2D ligands, missed self major histocompatibility complex (MHC) class I, or whether NK cells were stimulated with IL-2 and antibodies specific for NKR-P1C, CD16, CD244, Ly49D, and Ly49H. Defective secretion was specific to cytotoxic granules because release of IFN-γ on stimulation with IL-12 was normal. Plcg2-/- mice could not reject MHC class I-deficient lymphoma cells nor could they control CMV infection, but they effectively contained Listeria monocytogenes infection. Our results suggest that exocytosis of cytotoxic granules, but not cellular polarization toward targets, depends on intracellular calcium rise during NK cell cytotoxicity. In vivo, PLC-γ2 regulates selective facets of innate immunity because it is essential for NK cell responses to malignant and virally infected cells but not to bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document