Structure-function analysis of two interacting vaccinia proteins that are critical for viral morphogenesis: L2 and A30.5

2021 ◽  
Author(s):  
Juliana Debrito Carten ◽  
Matthew Greseth ◽  
Paula Traktman

An enduring mystery in poxvirology is the mechanism by which virion morphogenesis is accomplished. A30.5 and L2 are two small regulatory proteins that are essential for this process. Previous studies have shown that vaccinia A30.5 and L2 localize to the ER and interact during infection, but how they facilitate morphogenesis is unknown. To interrogate the relationship between A30.5 and L2, we generated inducible complementing cell lines (CV1-HA-L2; CV1-3xFLAG-A30.5) and deletion viruses (vΔL2; vΔA30.5). Loss of either protein resulted in a block in morphogenesis and a significant (>100-fold) decrease in infectious viral yield. Structure-function analysis of L2 and A30.5, using transient complementation assays, identified key functional regions in both proteins. A clustered charge-to-alanine L2 mutant (L2-RRD) failed to rescue a vΔL2 infection and exhibits a significantly retarded apparent molecular weight in vivo (but not in vitro ), suggestive of an aberrant post-translational modification. Furthermore, an A30.5 mutant with a disrupted putative N-terminal α-helix failed to rescue a vΔA30.5 infection. Using our complementing cell lines, we determined that the stability of A30.5 is dependent on L2, and that wild-type L2 and A30.5 coimmunoprecipitate in the absence of other viral proteins. Further examination of this interaction, using wild-type and mutant forms of L2 or A30.5, revealed that the inability of mutant alleles to rescue the respective deletion viruses is tightly correlated with a failure of L2 to stabilize and interact with A30.5. L2 appears to function as a chaperone-like protein for A30.5, ensuring that they work together as a complex during viral membrane biogenesis. IMPORTANCE Vaccinia virus is a large, enveloped DNA virus that was successfully used as the vaccine against smallpox. Vaccinia continues to be an invaluable biomedical research tool in basic research and in gene therapy vector and vaccine development. Although this virus has been studied extensively, the complex process of virion assembly, termed morphogenesis, still puzzles the field. Our work aims to better understand how two small viral proteins that are essential for viral assembly, L2 and A30.5, function during early morphogenesis. We show that A30.5 requires L2 for stability and that these proteins interact in the absence of other viral proteins. We identify regions in each protein required for their function and show that mutations in these regions disrupt the interaction between L2 and A30.5 and fail to restore virus viability.

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Zhongming Chen

Background: Cell migration is an important step involved in heart regeneration and many cardiovascular diseases. However, cell migration dynamics in vivo is poorly understood due to the challenges from mammal hearts, which are opaque and fast beating, and thus individual cardiac cells cannot be imaged or tracked. Aims: In this study, cell migration dynamics in the heart is recorded with a novel strategy, in which fluorescence protein-tagged collagen is secreted from cells and deposited into extracellular matrix, forming visible trails when cells are moving in tissues. As a proof-of-concept, transplanted migration dynamics of cardiac progenitor cells in mouse hearts were investaged. Methods: Stable cell lines expressing mCherry-tagged type I collagen were generated from isolated cardiac progenitor cells, ABCG2 + CD45 - CD31 - cells (side populations), or c-kit + CD45 - CD31 - cells (c-kit + CPCs). The cell migration dynamics were monitored and measured based on the cell trails after cell transplantation into mouse tissues. Results: The stable cell lines form red cell trails both in vitro and in vivo (Fig. 1A & 1B, Green: GFP; Red: mCherry-collagen I, Blue: DAPI, bar: 50 microns). In culture dishes, the cells form visible cell trails of fluorescence protein. The cell moving directions are random, with a speed of 288 +/- 79 microns/day (side populations, n=3) or 143 +/-37 microns/day (c-kit + CPCs, n=3). After transplantation into wild-type mouse hearts, the cells form highly tortuous trails along the gaps between the heart muscle fibers. Angle between a cell trail and a muscle fiber is 16+/-16 degree (n=3). Side populations migrate twice as fast as c-kit+ CPCs in the heart (16.0 +/-8.7 microns/day vs. 8.1+/-0.0 microns/day, n=3, respectively), 18 time slower than the respective speeds in vitro . Additionally, side populations migrate significantly faster in the heart than in the skeletal muscles (26.4+/-5.8 microns/day, n=3). The side populations move significantly faster in immunodeficient mouse hearts (36.7+/-13.3 microns/day, n=3, typically used for studying cell therapies) than in wild-type mouse hearts. Conclusion: For the first time, cell migration dynamics in living hearts is monitored and examined with genetically modified cell lines. This study may greatly advance the fields of cardiovascular biology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


2010 ◽  
Vol 84 (13) ◽  
pp. 6846-6860 ◽  
Author(s):  
Nadi T. Wickramasekera ◽  
Paula Traktman

ABSTRACT Poxvirus virions, whose outer membrane surrounds two lateral bodies and a core, contain at least 70 different proteins. The F18 phosphoprotein is one of the most abundant core components and is essential for the assembly of mature virions. We report here the results of a structure/function analysis in which the role of conserved cysteine residues, clusters of charged amino acids and clusters of hydrophobic/aromatic amino acids have been assessed. Taking advantage of a recombinant virus in which F18 expression is IPTG (isopropyl-β-d-thiogalactopyranoside) dependent, we developed a transient complementation assay to evaluate the ability of mutant alleles of F18 to support virion morphogenesis and/or to restore the production of infectious virus. We have also examined protein-protein interactions, comparing the ability of mutant and WT F18 proteins to interact with WT F18 and to interact with the viral A30 protein, another essential core component. We show that F18 associates with an A30-containing multiprotein complex in vivo in a manner that depends upon clusters of hydrophobic/aromatic residues in the N′ terminus of the F18 protein but that it is not required for the assembly of this complex. Finally, we confirmed that two PSSP motifs within F18 are the sites of phosphorylation by cellular proline-directed kinases in vitro and in vivo. Mutation of both of these phosphorylation sites has no apparent impact on virion morphogenesis but leads to the assembly of virions with significantly reduced infectivity.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 248-248
Author(s):  
Alice Bonato ◽  
Riccardo Bomben ◽  
Supriya Chakraborty ◽  
Giulia Felician ◽  
Claudio Martines ◽  
...  

Abstract Inactivating mutations in NF-kB pathway genes, such as the NF-kB inhibitor NFKBIE, are among the more frequent genetic lesions in chronic lymphocytic leukemia (CLL). However, the role of these genetic lesions in CLL pathogenesis and treatment resistance is still largely unknown and requires further study in in vivo models of the disease. To this end, we generated transplantable murine leukemias with inactivating NFKBIE mutations and investigated their impact on leukemia growth and response to ibrutinib (IBR) treatment. The NFKBIE mutations were introduced by CRISPR/Cas9 editing in two recently established autoreactive leukemia lines derived from the Eμ-TCL1 murine CLL model. These cell lines proliferate spontaneously in vitro in a BCR-dependent manner, but also respond with increased proliferation to certain microenvironmental signals, such as those generated by Toll-like receptor (TLR) stimulation (Chakraborty S et al, Blood 2021). To investigate whether NFKBIE mutations can affect the proliferation of these cell lines in vitro, we performed competition experiments with mixed cultures of cells with wild type and mutated NFKBIE. Analysis of the clonal composition after 2 weeks showed no change in the mutant allele frequency (MAF), suggesting that NFKBIE mutations do not affect the spontaneous in vitro growth of the immortalized leukemia cells. However, repeated TLR or BCR stimulation of these cells with CpG-DNA, LPS, anti-IgM or autoantigen resulted in a 2-3 fold increase in MAF, suggesting that NFKBIE mutations provide a growth advantage when the cells are exposed to certain microenvironmental signals (n=3 experiments/condition, P<0.05 for each condition). To investigate the impact of NFKBIE mutations on leukemia growth in vivo, the same cells were transplanted by intraperitoneal injection in wild type mouse recipients (n=8) and the clonal composition was determined 3 weeks later by MAF analysis of cells isolated from peritoneal cavity (PC), blood and spleen. A significant increase in MAF was observed only in leukemia cells isolated from the spleen (P<0.05), suggesting that microenvironmental signals that positively select NFKBIE-mutated cells are available only in certain tissue compartments. Because mutations in other NF-kB pathway genes have been associated with resistance to IBR in mantle cell lymphoma, we next investigated whether NFKBIE mutations can also affect the response to IBR treatment. In vitro BrdU-incorporation experiments showed that IBR inhibits the proliferation of cells with mutated NFKBIE to a significantly lesser extent compared to cells with wild type NFKBIE (% proliferating cells with wild type and mutated NFKBIE, respectively, cultured without IBR: 90% vs 88%, P=n.s., with 0.2 μM IBR: 57% vs 73%, P<0.001, with 1.0 μM IBR: 28% vs 53%, P<0.001). Consistent with this finding, positive selection of NFKBIE-mutated cells was observed in the presence of IBR after 14 days in mixed culture competition experiments (mean MAF without IBR 47%, with 0.2 μM IBR 61%, p=0.032, with 1.0 μM IBR 64%, p=0.034). The greater resistance of NFKBIE-mutated cells to IBR was further validated by in vivo competition experiments showing a significantly greater increase in MAF in mice treated with IBR compared to controls in all three investigated compartments (n=4 mice/group, PC: P=0.029, blood P=0.029, spleen: P=0.001). To validate these findings in the clinical setting, we investigated the presence of NFKBIE mutations in a cohort of 84 IBR-treated CLL patients. Mutations of NFKBIE were detected at pre-treatment in 10/84 patients, 7/10 with >10% VAF values. Kaplan Meier analysis showed a trend towards reduced progression-free and overall survival from the beginning of IBR treatment for NFKBIE-mutated cases (Figure 1A). Analysis of an extended cohort of over 200 cases is ongoing and will be presented at the meeting. Finally, to investigate whether leukemic cells with mutated NFKBIE remain sensitive to other BCR inhibitors, we tested their growth in the presence of the PI3K inhibitor idelalisib or SYK inhibitor fostamatinib (Figure 1B). In contrast to IBR, both drugs inhibited the proliferation of NFKBIE-mutated cells in vitro, with a greater effect observed with idelalisib. Collectively, these data demonstrate that NFKBIE mutations can reduce the response to IBR treatment and suggest that such cases may benefit more from treatment with a PI3K inhibitor. Figure 1 Figure 1. Disclosures Marasca: Janssen: Honoraria, Other: Travel grants; AstraZeneca: Honoraria; AbbVie: Honoraria, Other: Travel grants. Tafuri: Roche: Research Funding; Novartis: Research Funding; Celgene: Research Funding. Laurenti: Janssen: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria, Research Funding; Roche: Honoraria, Research Funding; Gilead: Honoraria; BeiGene: Honoraria. Gattei: abbVie: Research Funding; Janssen: Research Funding; Menarini: Research Funding.


2020 ◽  
Author(s):  
Shejuan An ◽  
Jeannie Camarillo ◽  
Tina Huang ◽  
Daphne Li ◽  
Juliette Morris ◽  
...  

Abstract Background: Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor. Most DIPGs harbor a histone H3 mutation, which alters histone post-translational modification (PTM) states and transcription. Here, we employed quantitative proteomic analysis to elucidate the impact of the H3.3K27M mutation, as well as radiation and bromodomain inhibition (BRDi) with JQ1, on DIPG PTM profiles.Methods: We performed targeted mass spectrometry on H3.3K27M mutant and wild-type tissues (n=12) and cell lines (n=7).Results: We found 29.2% and 26.4% of total H3.3K27 peptides were H3.3K27M in mutant DIPG tumor cell lines and tissue specimens, respectively. Significant differences in modification states were observed in H3.3K27M specimens, including at H3K27, H3K36, and H4K16. In addition, H3.3K27me1 and H4K16ac were the most significantly distinct modifications in H3.3K27M mutant tumors, relative to wild-type. Further, H3.3K36me2 was the most abundant co-occurring modification on the H3.3K27M mutant peptide in DIPG tissue, while H4K16ac was the most acetylated residue. Radiation treatment caused changes in PTM abundance in vitro, including increased H3K9me3. JQ1 treatment resulted in increased mono- and di-methylation of H3.1K27, H3.3K27, H3.3K36 and H4K20 in vitro. Conclusion: Taken together, our findings provide insight into the effects of the H3K27M mutation on histone modification states and response to treatment, and suggest that H3K36me2 and H4K16ac may represent unique tumor epigenetic signatures for targeted DIPG therapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3601-3601 ◽  
Author(s):  
Karthika Natarajan ◽  
Trevor J Mathias ◽  
Kshama A Doshi ◽  
Adriana E Tron ◽  
Manfred Kraus ◽  
...  

Abstract Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) are present in acute myeloid leukemia (AML) cells in 30% of cases and are associated with high relapse rate and short disease-free survival. FLT3 inhibitors have clinical activity, but their activity is limited and transient. New therapeutic approaches combining FLT3 inhibitors and inhibitors of downstream or parallel signaling pathways may increase depth and duration of responses. The Pim-1 serine/threonine kinase is transcriptionally upregulated by FLT3-ITD. We previously demonstrated that Pim-1 phosphorylates and stabilizes FLT3 and thereby promotes its signaling in a positive feedback loop. Pim kinase inhibitors are in clinical trials. Here we studied the effect of combinations of the Pim kinase inhibitor AZD1208 and clinically active FLT3 inhibitors on AML with FLT3-ITD in vitro and in vivo. Ba/F3-ITD cells, with FLT3-ITD, were grown in medium with the Pim kinase inhibitor AZD1208 at 1 μM and/or the FLT3 inhibitors quizartinib (Q), sorafenib (S) or crenolanib (C) at their IC50values of 1, 2.5 and 20 nM, respectively, and viable cells were measured at serial time points. While Q, S, C or AZD1208 treatments reduced cell numbers, compared to DMSO control, combined AZD1208 and Q, S or C treatments abrogated proliferation. Because FLT3-ITD cells remain responsive to FLT3 ligand (FLT3L) despite constitutive FLT3 activation and increased FLT3L levels following chemotherapy have been hypothesized to contribute to relapse, we repeated the proliferation experiments in the presence of 0, 1, 3 and 10 ng/ml FLT3L. FLT3L produced a concentration-dependent increase in proliferation and, while Q, S, C or AZD1208 treatments individually reduced cell numbers, combined AZD1208 and Q, S or C abrogated proliferation at all FLT3L concentrations tested, suggesting that these combinations overcome growth stimulation by FLT3L. To understand the anti-proliferative effect of combined Pim-1 and FLT3 inhibitors, we first studied cell cycle effects of AZD1208 and Q, S or C in Ba/F3-ITD cells and of AZD1208 and Q in the additional FLT3-ITD cell lines 32D-ITD, MV4-11 and MOLM14. We found a progressive increase in sub-G1 phase cells at 24, 48 and 72 hours, consistent with induction of apoptosis. Synergistic induction of apoptosis was confirmed by Annexin V/propidium iodide labeling of Ba/F3-ITD and 32D-ITD cells treated for 48 hours with AZD1208 combined with Q (p<0.0001), S (p<0.0001) or C (p<0.001), and of MV4-11 (p<0.0001) and MOLM14 (p<0.05) cells treated with AZD1208 combined with Q, in relation to each drug alone. Apoptosis was additionally confirmed by loss of mitochondrial membrane potential. Synergistic induction of apoptosis was not seen in Ba/F3-WT or 32D-WT cells, with wild-type FLT3, indicating a FLT3-ITD-specific effect. Synergistic (p<0.01) induction of apoptosis was seen in three FLT3-ITD AML patient samples treated in vitro with AZD1208 combined with Q. In an in vivo model, synergistic decrease in tumor volume was seen with combined AZD1208 and Q therapy in mice with subcutaneously implanted MV4-11 cells, with FLT3-ITD, but not with KG1a cells, with wild-type FLT3. Mechanistically, combined AZD1208 and Q treatment in vitro did not increase reactive oxygen species, compared to each drug alone, but increased both cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP) levels, and caspase 3 cleavage was reduced by co-incubation with the pan-caspase inhibitor Z-VAD. Moreover, combined AZD1208 and Q treatment caused a synergistic decrease in expression of the anti-apoptotic Mcl-1 and of Bcl-xL proteins, but did not significantly alter Bim-1, p-Bad, Bad, Bax, Bak or Bcl-2, pro- and anti-apoptotic protein levels. Bcl-xL mRNA expression decreased along with protein levels, but Mcl-1 mRNA levels remain unchanged, indicating post-transcriptional down-regulation of Mcl-1 by the combination treatment. In summary, synergistic cytotoxicity of AZD1208 and clinically active FLT3 inhibitors was demonstrated in FLT3-ITD cell lines and patient samples in vitro and in cell lines in vivo, via caspase-mediated apoptosis, associated with a synergistic decrease in Mcl-1 and Bcl-xL expression. Our data suggest clinical promise for combination therapy with Pim kinase and FLT3 inhibitors in patients with AML with FLT3-ITD. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Shejuan An ◽  
Jeannie M. Camarillo ◽  
Tina Yi-Ting Huang ◽  
Daphne Li ◽  
Juliette A. Morris ◽  
...  

Abstract Background Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor. Most DIPGs harbor a histone H3 mutation, which alters histone post-translational modification (PTM) states and transcription. Here, we employed quantitative proteomic analysis to elucidate the impact of the H3.3K27M mutation, as well as radiation and bromodomain inhibition (BRDi) with JQ1, on DIPG PTM profiles. Methods We performed targeted mass spectrometry on H3.3K27M mutant and wild-type tissues (n = 12) and cell lines (n = 7). Results We found 29.2 and 26.4% of total H3.3K27 peptides were H3.3K27M in mutant DIPG tumor cell lines and tissue specimens, respectively. Significant differences in modification states were observed in H3.3K27M specimens, including at H3K27, H3K36, and H4K16. In addition, H3.3K27me1 and H4K16ac were the most significantly distinct modifications in H3.3K27M mutant tumors, relative to wild-type. Further, H3.3K36me2 was the most abundant co-occurring modification on the H3.3K27M mutant peptide in DIPG tissue, while H4K16ac was the most acetylated residue. Radiation treatment caused changes in PTM abundance in vitro, including increased H3K9me3. JQ1 treatment resulted in increased mono- and di-methylation of H3.1K27, H3.3K27, H3.3K36 and H4K20 in vitro. Conclusion Taken together, our findings provide insight into the effects of the H3K27M mutation on histone modification states and response to treatment, and suggest that H3K36me2 and H4K16ac may represent unique tumor epigenetic signatures for targeted DIPG therapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 793-793 ◽  
Author(s):  
Amie S. Corbin ◽  
Shadmehr Demehri ◽  
Ian J. Griswold ◽  
Chester A. Metcalf ◽  
William C. Shakespeare ◽  
...  

Abstract Oncogenic mutations of the KIT receptor tyrosine kinase have been identified in several malignancies including gastrointestinal stromal tumors (GIST), systemic mastocytosis (SM), seminomas/dysgerminomas and acute myelogenous leukemia (AML). Mutations in the regulatory juxtamembrane domain are common in GIST, while mutations in the activation loop of the kinase (most commonly D816V) occur predominantly in SM and at low frequency in AML. Several ATP-competitive kinase inhibitors, including imatinib, are effective against juxtamembrane KIT mutants, however, the D816V mutant is largely resistant to inhibition. We analyzed the sensitivities of cell lines expressing wild type KIT, juxtamembrane mutant KIT (V560G) and activation loop mutant KIT (D816V,F,Y and murine D814Y) to a potent Src/Abl kinase inhibitor, AP23464, and analogs. IC50 values for inhibition of cellular KIT phosphorylation by AP23464 were 5–11 nM for activation loop mutants, 70 nM for the juxtamembrane mutant and 85 nM for wild type KIT. Consistent with this, IC50 values in cell proliferation assays were 3–20 nM for activation loop mutants and 100 nM for wild type KIT and the juxtmembrane mutant. In activation loop mutant-expressing cell lines, AP23464, at concentrations ≤50 nM, induced apoptosis, arrested the cell cycle in G0/G1 and down-regulated phosphorylation of Akt and STAT3, signaling pathways critical for the transforming capacity of mutant KIT. In contrast, 500 nM AP23464 was required to induce equivalent effects in wild-type KIT and juxtamembrane mutant-expressing cell lines. These data demonstrate that activation loop KIT mutants are considerably more sensitive to inhibition by AP23464 than wild type or juxtamembrane mutant KIT. Non-specific toxicity in parental cells occurred only at concentrations above 2 μM. Additionally, at concentrations below 100 nM, AP23464 did not inhibit formation of granulocyte/macrophage and erythrocyte colonies from normal bone marrow, suggesting that therapeutic drug levels would not impact normal hematopoiesis. We also examined in vivo target inhibition in a mouse model. Mice were subcutaneously injected with D814Y-expressing (D816V homologous) murine mastocytoma cells. Once tumors were established, compound was administered three-times daily by oral gavage. One hour post treatment we observed >90% inhibition of KIT phosphorylation in tumor tissue. Following a three-day treatment regimen, there was a statistically significant difference in tumor size compared to controls. Thus, AP23464 analogs effectively target D816-mutant KIT both in vitro and in vivo and inhibit activation loop KIT mutants more potently than the wild type protein. These data provide evidence that this class of kinase inhibitors may have therapeutic potential for D816V-expressing malignancies such as SM or AML.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3499-3499 ◽  
Author(s):  
Gabriel G Vega ◽  
Mario I Vega ◽  
Sara Huerta-Yepez ◽  
Ali Jazirehi ◽  
Hector Mayani ◽  
...  

Abstract Abstract 3499 Rituximab (chimeric anti-CD20 mAb) (Rtx) has been successfully used in the treatment of patients with B-cell non-Hodgkin's lymphomas (B-NHLs). The combination treatment with chemotherapy results in achieving high response rates and prolongation of survival. However, a subset of patients does not initially respond to treatment and many responding patients relapse and no longer respond to further treatments. Currently, there are no alternative therapies for resistant patients. The mechanism of resistance in vivo is not clear. However, we have explored a potential mechanism by developing in vitro several clones of Rtx-resistant (RR) variants for several B-NHL cell lines and characterized their properties. Briefly, unlike the parental wild-type, the RR clones express CD20 but no longer respond to treatment with Rtx or combination with cytotoxic drugs. Further, these clones overexpress the activity of several survival/anti-apoptotic pathways [1]. It is not known whether chemical modification of Rtx might be necessary to exert its activity and signaling on the RR clones. Hence, a recent report demonstrated that a fusion protein consisting of Rtx and human IFN-α (anti-CD20-hIFN-α) exhibited superior activity over Rtx, IFN-α, or combination of Rtx and IFN-α, and exhibited significant anti-proliferative and apoptotic effects in vitro with several B-NHL cell lines and in vivo an anti-tumor xenograft response [2]. These findings prompted us to investigate the effect of anti-CD20-hIFN-α on the RR clones. We hypothesized that anti-CD20-hIFN-α may exert an anti-proliferative and apoptotic effects on the RR clones and may also synergize when used in combination with chemotherapy. In this study, we used the B-NHL line Ramos (Burkitt) and 2F7 (AIDS-related) and their respective Ramos RR1 and 2F7 RR1 clones as models. We examined the effects of anti-CD20-hIFN-α and Rtx on the wild-type and RR clones following treatment with IgG isotype control, Rtx, anti-CD20-hIFN-α, CDDP (10 mg/ml) and Treanda® (Bendamustine) (5 mg/ml), as well as combinations. Treatment of 2F7 with single agents alone had no cytotoxic effect; however, treatment with the combination of Rtx and CDDP or Treanda® or anti-CD20-hIFN-α plus CDDP or Treanda® resulted in significant cytotoxicity. Treatment of Ramos resulted in similar findings observed with 2F7, however, the anti-CD20-hIFN-α alone was significantly cytotoxic to Ramos cells. Importantly, whereas treatment of 2F7 RR1 or Ramos RR1 with Rtx or Rtx plus CDDP or Treanda® had no cytotoxic effects (as expected), the treatment with the anti-CD20-hIFN-α alone had significant cytotoxicity and synergy was observed when used in combination with CDDP or Treanda®. In all of the above experiments, the level of cytotoxicity was a function of the antibody concentration used (range 10–30 μg/ml). The mechanism by which anti-CD20-hIFN-α signals the RR clones for cytotoxicity and sensitization was examined. Preliminary findings show that treatment of the RR clones with anti-CD20-hIFN-α inhibits the activity of p38MAPK survival pathway and also inhibits the anti-apoptotic gene products, Bcl-2/BclXL and upregulates the pro-apoptotic expression of Bax. These findings established, for the first time, that modification of Rtx by fusion with IFN-α was cytotoxic on the RR clones and synergized with chemotherapy. The findings also show, unlike Rtx that, anti-CD20-hIFN-α signals the RR cells and inhibits survival/antiapoptotic pathways leading to direct cytotoxicity and chemo-sensitization. The molecular signaling mediated by anti-CD20-hIFN-α on the cell membrane of RR cells leading to inhibition of survival pathways will be presented. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3523-3523
Author(s):  
Danielle Garshott ◽  
Nicole Melong ◽  
Tania T. Sarker ◽  
Yue Xi ◽  
Amy Brownell ◽  
...  

Abstract Background: Acute leukemias are the most common cancers in childhood. Despite multi-agent chemotherapy protocols and the introduction of novel molecularly targeted therapies which have resulted in improved survival over the last few decades, relapsed acute lymphoblastic leukemia remains the second most common pediatric cancer diagnosis. In addition, morbidities from current chemotherapy regimens are unacceptably high. Abundant evidence point to a major role for mediators of the unfolded protein response (UPR) in normal and leukemic white blood cell biology. We have demonstrated that activation of the UPR is a productive approach to inhibit the proliferation of solid tumor cell lines in vitro and to reducing xenograft burden in vivo. The UPR consists of genetically distinct mechanisms that serve to clear misfolded proteins from the endoplasmic reticulum (ER) and enhance protein folding, or induce apoptosis if the initiating stress is prolonged or robust. ML291 is a novel UPR-inducing sulfonamidebenzamide, identified through cell-based high throughput screening and iterative SAR-guided chemical synthesis, that overwhelms the adaptive capacity of the UPR and induces apoptosis in a variety of solid cancer models. Objective: To determine the ability of ML291 to activate the UPR and induce apoptosis in a panel of leukemia cell lines, and to use CHOP-null K562 cells to elucidate the relative contribution of the UPR. We hypothesized that ML291 might activate the PERK/eIF2a/CHOP (apoptotic) arm of the UPR and reduce leukemic cell burden in vitro and in vivo. Methods: MTT and luciferase-based proliferation assays, flow cytometry and RT-qPCR were used to evaluate cell growth, UPR activation and apoptosis in a panel of leukemia cell lines that included AML, ALL and CML in cells exposed to ML291. CRISPR-Cas9 genome editing was used to delete CHOP in K562 (human myeloid leukemia) cells. Deletion was validated by immunoblot analysis and these cells were subjected to the same proliferation and gene analyses described above. The in vivo response to ML291 therapy was evaluated in an established zebrafish xenograft assay (Corkery et al. BJH 2011) in which embryos were xenotransplanted with wild type or CHOP knockdown K562 cells and embryos bathed in ML291. Results: Immunoblot and RT-qPCR analysis revealed an accumulation of proteins and increased gene expression for downstream UPR genes, including CHOP, GRP78/BiP, GADD34 and XBP1 in leukemia cells following ML291 treatment, indicating the activation of the UPR. Increased expression of the apoptotic genes, NOXA, PUMA and DR5 was also observed post-treatment with ML291; and dose response proliferation assays performed after 24 hours revealed IC50 concentrations of 1 - 30µM across cell lines. CHOP deleted K562 cells were protected from cell death when cultured with increasing concentrations of ML291, and were significantly less able to translocate phosphatidylserine across the cell membrane and activate the caspase cascade. When zebrafish embryos xenotransplanted with K562-wild type or -CHOP-null cells were bathed in water containing 5mM ML291 for three days, there was a significant reduction in leukemia cell burden exclusively in theK562 wild type xenografts. Conclusion: Collectively these data indicate that intact PERK/eIF2a/CHOP signaling is required for efficient leukemic cell apoptosis in response to ML291 in vitro and in vivo, and support the hypothesis that small molecule enforcement of the UPR might be a productive therapeutic approach in leukemia. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document