scholarly journals Powassan Viruses Spread Cell to Cell During Direct Isolation from Ixodes Ticks and Persistently Infect Human Brain Endothelial Cells and Pericytes

2021 ◽  
Author(s):  
Jonas N. Conde ◽  
Santiago Sanchez-Vicente ◽  
Nicholas Saladino ◽  
Elena E. Gorbunova ◽  
William R. Schutt ◽  
...  

Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the Northeastern U.S., with a 2% prevalence in Long Island (LI) deer ticks ( Ixodes scapularis ). POWVs are transmitted in as little as 15 minutes of a tick bite, and enter the CNS to cause encephalitis (10% fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of spread cell to cell, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9, -LI41 and Lineage I POWV-LB, productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-β (IFNβ) and IFN-stimulated genes, with delayed IFNβ secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion a subset of POWV infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments. Importance We isolated POWVs from LI deer ticks ( I. scapularis ) directly in VeroE6 cells and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculating VeroE6 cells with POWV containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell to cell spread. POWV-LI9, -LI41, and Lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower chamber pericytes, suggesting a mechanism for POWV transmission across BBB. POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB, and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.

2021 ◽  
Author(s):  
Jonas N. Conde ◽  
Santiago Sanchez-Vicente ◽  
Nicholas Saladino ◽  
Elena E. Gorbunova ◽  
William R. Schutt ◽  
...  

AbstractPowassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the Northeastern U.S., with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted in as little as 15 minutes of a tick bite, and enter the CNS to cause encephalitis (10% fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of spread cell to cell, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9, -LI41 and Lineage I POWV-LB, productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-β (IFNβ) and IFN-stimulated genes, with delayed IFNβ secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion a subset of POWV infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments.ImportanceWe isolated POWVs from LI deer ticks (I. scapularis) directly in VeroE6 cells and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculating VeroE6 cells with POWV containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell to cell spread. POWV-LI9, -LI41, and Lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower chamber pericytes, suggesting a mechanism for POWV transmission across BBB. POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB, and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3064-3072 ◽  
Author(s):  
F.M. Hofman ◽  
P. Chen ◽  
R. Jeyaseelan ◽  
F. Incardona ◽  
M. Fisher ◽  
...  

Abstract Increased levels of endothelin-1 (Et-1), a potent vasoconstrictor, have been correlated with hypertension and neuronal damage in ischemic/reperfusion injury. The presence of polymorphonuclear cells (PMNs) in the brain has been shown to be directly responsible for this observed pathology. To address the question of whether Et-1 plays a role in this process, human brain-derived endothelial cells (CNS-ECs) were cultured with Et-1. The results demonstrate that Et-1 induces production of the neutrophil chemoattractant interleukin-8 (IL-8) twofold to threefold after 72 hours; mRNA was maximal after 1 hour of stimulation. Conditioned culture medium derived from Et-1–stimulated CNS-ECs induced a chemotactic response in the PMN migration assay. The inflammatory cytokines tumor necrosis factor- (TNF) and IL-1β functioned additively with Et-1 in increasing IL-8 production. In contrast, transforming growth factor-β (TGF-β), but not IL-10, completely abolished the effect of Et-1 on IL-8 production. However, Et-1 did not modulate intercellular adhesion molecule-1 (ICAM-1) expression. These data demonstrate that Et-1 may be a risk factor in ischemic/reperfusion injury by inducing increased levels of the neutrophil chemoattractant IL-8. © 1998 by The American Society of Hematology.


mBio ◽  
2021 ◽  
Author(s):  
Megan C. Mladinich ◽  
Jonas N. Conde ◽  
William R. Schutt ◽  
Sook-Young Sohn ◽  
Erich R. Mackow

Our findings demonstrate that CCL5 is required for ZIKV to persistently infect human brain ECs that normally protect neuronal compartments. We demonstrate that ZIKV-elicited CCL5 secretion directs autocrine hBMEC activation of ERK1/2 survival pathways via CCR3/CCR5, and inhibiting CCL5/CCR3/CCR5 responses prevented ZIKV persistence and spread.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Megan C. Mladinich ◽  
John Schwedes ◽  
Erich R. Mackow

ABSTRACT Zika virus (ZIKV) is a mosquito-borne Flavivirus that has emerged as the cause of encephalitis and fetal microencephaly in the Americas. ZIKV uniquely persists in human bodily fluids for up to 6 months, is sexually transmitted, and traverses the placenta and the blood-brain barrier (BBB) to damage neurons. Cells that support persistent ZIKV replication and mechanisms by which ZIKV establishes persistence remain enigmatic but central to ZIKV entry into protected neuronal compartments. The endothelial cell (EC) lining of capillaries normally constrains transplacental transmission and forms the BBB, which selectively restricts access of blood constituents to neurons. We found that ZIKV (strain PRVABC59) persistently infects and continuously replicates in primary human brain microvascular ECs (hBMECs), without cytopathology, for >9 days and following hBMEC passage. ZIKV did not permeabilize hBMECs but was released basolaterally from polarized hBMECs, suggesting a direct mechanism for ZIKV to cross the BBB. ZIKV-infected hBMECs were rapidly resistant to alpha interferon (IFN-α) and transiently induced, but failed to secrete, IFN-β and IFN-λ. Global transcriptome analysis determined that ZIKV constitutively induced IFN regulatory factor 7 (IRF7), IRF9, and IFN-stimulated genes (ISGs) 1 to 9 days postinfection, despite persistently replicating in hBMECs. ZIKV constitutively induced ISG15, HERC5, and USP18, which are linked to hepatitis C virus (HCV) persistence and IFN regulation, chemokine CCL5, which is associated with immunopathogenesis, as well as cell survival factors. Our results reveal that hBMECs act as a reservoir of persistent ZIKV replication, suggest routes for ZIKV to cross hBMECs into neuronal compartments, and define novel mechanisms of ZIKV persistence that can be targeted to restrict ZIKV spread. IMPORTANCE ZIKV persists in patients, crossing placental and neuronal barriers, damaging neurons, and causing fetal microencephaly. We found that ZIKV persistently infects brain endothelial cells that normally protect neurons from viral exposure. hBMECs are not damaged by ZIKV infection and, analogous to persistent HCV infection, ZIKV constitutively induces and evades antiviral ISG and IFN responses to continuously replicate in hBMECs. As a result, hBMECs provide a protective niche for systemic ZIKV spread and a viral reservoir localized in the normally protective blood-brain barrier. Consistent with the spread of ZIKV into neuronal compartments, ZIKV was released basolaterally from hBMECs. Our findings define hBMEC responses that contribute to persistent ZIKV infection and potential targets for clearing ZIKV infections from hBMECs. These results further suggest roles for additional ZIKV-infected ECs to facilitate viral spread and persistence in the protected placental, retinal, and testicular compartments.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3064-3072 ◽  
Author(s):  
F.M. Hofman ◽  
P. Chen ◽  
R. Jeyaseelan ◽  
F. Incardona ◽  
M. Fisher ◽  
...  

Increased levels of endothelin-1 (Et-1), a potent vasoconstrictor, have been correlated with hypertension and neuronal damage in ischemic/reperfusion injury. The presence of polymorphonuclear cells (PMNs) in the brain has been shown to be directly responsible for this observed pathology. To address the question of whether Et-1 plays a role in this process, human brain-derived endothelial cells (CNS-ECs) were cultured with Et-1. The results demonstrate that Et-1 induces production of the neutrophil chemoattractant interleukin-8 (IL-8) twofold to threefold after 72 hours; mRNA was maximal after 1 hour of stimulation. Conditioned culture medium derived from Et-1–stimulated CNS-ECs induced a chemotactic response in the PMN migration assay. The inflammatory cytokines tumor necrosis factor- (TNF) and IL-1β functioned additively with Et-1 in increasing IL-8 production. In contrast, transforming growth factor-β (TGF-β), but not IL-10, completely abolished the effect of Et-1 on IL-8 production. However, Et-1 did not modulate intercellular adhesion molecule-1 (ICAM-1) expression. These data demonstrate that Et-1 may be a risk factor in ischemic/reperfusion injury by inducing increased levels of the neutrophil chemoattractant IL-8. © 1998 by The American Society of Hematology.


2021 ◽  
Vol 22 (10) ◽  
pp. 5065
Author(s):  
Tatjana Vujić ◽  
Domitille Schvartz ◽  
Anton Iliuk ◽  
Jean-Charles Sanchez

Over the last decade, the knowledge in extracellular vesicles (EVs) biogenesis and modulation has increasingly grown. As their content reflects the physiological state of their donor cells, these “intercellular messengers” progressively became a potential source of biomarker reflecting the host cell state. However, little is known about EVs released from the human brain microvascular endothelial cells (HBMECs). The current study aimed to isolate and characterize EVs from HBMECs and to analyze their EVs proteome modulation after paraquat (PQ) stimulation, a widely used herbicide known for its neurotoxic effect. Size distribution, concentration and presence of well-known EV markers were assessed. Identification and quantification of PQ-exposed EV proteins was conducted by data-independent acquisition mass spectrometry (DIA-MS). Signature pathways of PQ-treated EVs were analyzed by gene ontology terms and pathway enrichment. Results highlighted that EVs exposed to PQ have modulated pathways, namely the ubiquinone metabolism and the transcription HIF-1 targets. These pathways may be potential molecular signatures of the PQ-induced toxicity carried by EVs that are reflecting their cell of origin by transporting with them irreversible functional changes.


2021 ◽  
Vol 22 (2) ◽  
pp. 798
Author(s):  
Ibukunoluwapo O. Zabroski ◽  
Matthew A. Nugent

The binding of vascular endothelial growth factor A (VEGF) to VEGF receptor-2 (VEGFR-2) stimulates angiogenic signaling. Lipid rafts are cholesterol-dense regions of the plasma membrane that serve as an organizational platform for biomolecules. Although VEGFR2 has been shown to colocalize with lipid rafts to regulate its activation, the effect of lipid rafts on non-activated VEGFR2 has not been explored. Here, we characterized the involvement of lipid rafts in modulating the stability of non-activated VEGFR2 in endothelial cells using raft disrupting agents: methyl-β-cyclodextrin, sphingomyelinase and simvastatin. Disrupting lipid rafts selectively decreased the levels of non-activated VEGFR2 as a result of increased lysosomal degradation. The decreased expression of VEGFR2 translated to reduced VEGF-activation of the extracellular signal-regulated protein kinases (ERK). Overall, our results indicate that lipid rafts stabilize VEGFR2 and its associated signal transduction activities required for angiogenesis. Thus, modulation of lipid rafts may provide a means to regulate the sensitivity of endothelial cells to VEGF stimulation. Indeed, the ability of simvastatin to down regulate VEGFR2 and inhibit VEGF activity suggest a potential mechanism underlying the observation that this drug improves outcomes in the treatment of certain cancers.


Sign in / Sign up

Export Citation Format

Share Document