scholarly journals Integrin β1 Promotes Peripheral Entry by Rabies Virus

2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Lei Shuai ◽  
Jinliang Wang ◽  
Dandan Zhao ◽  
Zhiyuan Wen ◽  
Jinying Ge ◽  
...  

ABSTRACT Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin β1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies. IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin β1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Benoit Besson ◽  
Seonhee Kim ◽  
Taehee Kim ◽  
Yoonae Ko ◽  
Sangchul Lee ◽  
...  

ABSTRACTThroughout the rabies virus (RABV) infectious cycle, host-virus interactions define its capacity to replicate, escape the immune response, and spread. As phosphorylation is a key regulatory mechanism involved in most cellular processes, kinases represent a target of choice to identify host factors required for viral replication. A kinase and phosphatase small interfering RNA (siRNA) high-content screening was performed on a fluorescent protein-recombinant field isolate (Tha RABV). We identified 57 high-confidence key host factors important for RABV replication with a readout set at 18 h postinfection and 73 with a readout set at 36 h postinfection, including 24 common factors at all stages of the infection. Amongst them, gene clusters of the most prominent pathways were determined. Up to 15 mitogen-activated protein kinases (MAPKs) and effectors, including MKK7 (associated with Jun N-terminal protein kinase [JNK] signalization) and DUSP5, as well as 17 phosphatidylinositol (PI)-related proteins, including PIP5K1C and MTM1, were found to be involved in the later stage of RABV infection. The importance of these pathways was further validated, as small molecules Ro 31-8820 and PD 198306 inhibited RABV replication in human neurons.IMPORTANCERabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection.


2008 ◽  
Vol 82 (9) ◽  
pp. 4343-4353 ◽  
Author(s):  
Sebastian C. Y. Ku ◽  
Jialing Lee ◽  
Joanne Lau ◽  
Meera Gurumurthy ◽  
Raymond Ng ◽  
...  

ABSTRACT X-box binding protein 1 (XBP-1), a basic leucine zipper transcription factor, plays a key role in the cellular unfolded protein response (UPR). There are two XBP-1 isoforms in cells, spliced XBP-1S and unspliced XBP-1U. XBP-1U has been shown to bind to the 21-bp Tax-responsive element of the human T-lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR) in vitro and transactivate HTLV-1 transcription. Here we identify XBP-1S as a transcription activator of HTLV-1. Compared to XBP-1U, XBP-1S demonstrates stronger activating effects on both basal and Tax-activated HTLV-1 transcription in cells. Our results show that both XBP-1S and XBP-1U interact with Tax and bind to the HTLV-1 LTR in vivo. In addition, elevated mRNA levels of the gene for XBP-1 and several UPR genes were detected in the HTLV-1-infected C10/MJ and MT2 T-cell lines, suggesting that HTLV-1 infection may trigger the UPR in host cells. We also identify Tax as a positive regulator of the expression of the gene for XBP-1. Activation of the UPR by tunicamycin showed no effect on the HTLV-1 LTR, suggesting that HTLV-1 transcription is specifically regulated by XBP-1. Collectively, our study demonstrates a novel host-virus interaction between a cellular factor XBP-1 and transcriptional regulation of HTLV-1.


2021 ◽  
Author(s):  
Connor G G Bamford ◽  
Lindsay Broadbent ◽  
Elihu Aranday Cortes ◽  
Mary McCabe ◽  
James McKenna ◽  
...  

SARS-CoV-2 continues to evolve, resulting in several variants of concern with novel properties. The factors driving SARS-CoV-2 fitness and evolution in the human respiratory tract remain poorly defined. Here, we provide evidence that both viral and host factors co-operate to shape SARS-CoV-2 genotypic and phenotypic change. Through viral whole genome sequencing, we explored the evolution of two clinical isolates of SARS CoV-2 during passage in unmodified Vero-derived cell lines and in parallel, in well-differentiated primary nasal epithelial cell (WD-PNEC) cultures. We identify a consistent, rich genetic diversity arising in vitro, variants of which could rapidly rise to near-fixation with 2 passages. Within isolates, SARS-CoV-2 evolution was dependent on host cells, with Vero-derived cells facilitating more profound genetic changes. However, most mutations were not shared between strains. Furthermore, comparison of both Vero-grown isolates on WD-PNECs disclosed marked growth attenuation mapping to the loss of the polybasic cleavage site (PBCS) in Spike while the strain with mutations in NSP12 (T293I), Spike (P812R) and a truncation of ORF7a remained viable in WD-PNECs. Our work highlights the significant genetic plasticity of SARS-CoV-2 while uncovering an influential role for collaboration between viral and host cell factors in shaping viral evolution and fitness in human respiratory epithelium.


Author(s):  
Juan J Quereda ◽  
Camille Morel ◽  
Noelia Lopez-Montero ◽  
Jason Ziveri ◽  
Steven Rolland ◽  
...  

Abstract The bacterial pathogen Listeria monocytogenes invades host cells, ruptures the internalization vacuole, and reaches the cytosol for replication. A high-content small interfering RNA (siRNA) microscopy screen allowed us to identify epithelial cell factors involved in L. monocytogenes vacuolar rupture, including the serine/threonine kinase Taok2. Kinase activity inhibition using a specific drug validated a role for Taok2 in favoring L. monocytogenes cytoplasmic access. Furthermore, we showed that Taok2 recruitment to L. monocytogenes vacuoles requires the presence of pore-forming toxin listeriolysin O. Overall, our study identified the first set of host factors modulating L. monocytogenes vacuolar rupture and cytoplasmic access in epithelial cells.


2002 ◽  
Vol 184 (8) ◽  
pp. 2204-2214 ◽  
Author(s):  
Abhijit Basu ◽  
Mamta Chawla-Sarkar ◽  
Santanu Chakrabarti ◽  
Sujoy K. Das Gupta

ABSTRACT The minimal replication region of the mycobacterial plasmid pAL5000 encompasses the replication origin (ori) and two tandemly organized replication genes, repA and repB, the functions of which are not clearly known. It was observed that when the repA and repB genes were expressed in Escherichia coli, a strong ori binding activity was generated in the host cells. Inactivation of repB led to a complete loss of activity, whereas inactivation of repA had a partial effect, indicating that while repB plays an important role in the process, its activity is stimulated through coexpression of repA. However, this stimulatory effect could be demonstrated only when expression of repA and that of repB were coupled. At a relatively high concentration (1,000 nM), the purified RepB protein was found to form an ori complex with low specificity, which was sensitive to high salt concentrations and challenge by a nonspecific competitor. In contrast, the complex formed by an extract of repA-repB-expressing cells was highly specific and was resistant to both types of challenges. At a 10-fold-lower concentration, RepB did not exhibit ori binding activity, but it could nevertheless form a salt-resistant ori complex in vitro, provided that host factors were present. Antibody supershift experiments indicated that RepB is a key component of the specific complex formed by extracts prepared from E. coli cells expressing the repA and repB genes and also from mycobacterial cells harboring pAL5000-derived vectors. The results indicate that in vivo RepB interacts with host factors and forms an ori complex, but this activity is maximal only when there is coupled expression of repA.


1999 ◽  
Vol 10 (4) ◽  
pp. 1105-1118 ◽  
Author(s):  
Geri Kreitzer ◽  
Guojuan Liao ◽  
Gregg G. Gundersen

Posttranslationally modified forms of tubulin accumulate in the subset of stabilized microtubules (MTs) in cells but are not themselves involved in generating MT stability. We showed previously that stabilized, detyrosinated (Glu) MTs function to localize vimentin intermediate filaments (IFs) in fibroblasts. To determine whether tubulin detyrosination or MT stability is the critical element in the preferential association of IFs with Glu MTs, we microinjected nonpolymerizable Glu tubulin into cells. If detyrosination is critical, then soluble Glu tubulin should be a competitive inhibitor of the IF–MT interaction. Before microinjection, Glu tubulin was rendered nonpolymerizable and nontyrosinatable by treatment with iodoacetamide (IAA). Microinjected IAA-Glu tubulin disrupted the interaction of IFs with MTs, as assayed by the collapse of IFs to a perinuclear location, and had no detectable effect on the array of Glu or tyrosinated MTs in cells. Conversely, neither IAA-tyrosinated tubulin nor untreated Glu tubulin, which assembled into MTs, caused collapse of IFs when microinjected. The epitope on Glu tubulin responsible for interfering with the Glu MT–IF interaction was mapped by microinjecting tubulin fragments of α-tubulin. The 14-kDa C-terminal fragment of Glu tubulin (α-C Glu) induced IF collapse, whereas the 36-kDa N-terminal fragment of α-tubulin did not alter the IF array. The epitope required more than the detyrosination site at the C terminus, because a short peptide (a 7-mer) mimicking the C terminus of Glu tubulin did not disrupt the IF distribution. We previously showed that kinesin may mediate the interaction of Glu MTs and IFs. In this study we found that kinesin binding to MTs in vitro was inhibited by the same reagents (i.e., IAA-Glu tubulin and α-C Glu) that disrupted the IF–Glu MT interaction in vivo. These results demonstrate for the first time that tubulin detyrosination functions as a signal for the recruitment of IFs to MTs via a mechanism that is likely to involve kinesin.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhan Liu ◽  
Xiangfei Geng ◽  
Qiping Zhao ◽  
Shunhai Zhu ◽  
Hongyu Han ◽  
...  

Abstract Background Chicken coccidiosis is a parasitic disease caused by Eimeria of Apicomplexa, which has caused great economic loss to the poultry breeding industry. Host vimentin is a key protein in the process of infection of many pathogens. In an earlier phosphorylation proteomics study, we found that the phosphorylation level of host vimentin was significantly regulated after Eimeria tenella sporozoite infection. Therefore, we explored the role of host vimentin in the invasion of host cells by sporozoites. Methods Chicken vimentin protein was cloned and expressed. We used qPCR, western blotting, and indirect immunofluorescence to detect levels of mRNA transcription, translation, and phosphorylation, and changes in the distribution of vimentin after E. tenella sporozoite infection. The sporozoite invasion rate in DF-1 cells treated with vimentin polyclonal antibody or with small interfering RNA (siRNA), which downregulated vimentin expression, was assessed by an in vitro invasion test. Results The results showed that vimentin transcription and translation levels increased continually at 6–72 h after E. tenella sporozoite infection, and the total phosphorylation levels of vimentin also changed. About 24 h after sporozoite infection, vimentin accumulated around sporozoites in DF-1 cells. Treating DF-1 cells with vimentin polyclonal antibody or downregulating vimentin expression by siRNA significantly improved the invasion efficiency of sporozoites. Conclusion In this study, we showed that vimentin played an inhibitory role during the invasion of sporozoites. These data provided a foundation for clarifying the relationship between Eimeria and the host. Graphical Abstract


2008 ◽  
Vol 149 (4) ◽  
pp. 153-159 ◽  
Author(s):  
Zsuzsanna Rácz ◽  
Péter Hamar

A genetikában új korszak kezdődött 17 éve, amikor a petúniában felfedezték a koszuppressziót. Később a koszuppressziót azonosították a növényekben és alacsonyabb rendű eukariótákban megfigyelt RNS-interferenciával (RNSi). Bár a növényekben ez ősi vírusellenes gazdaszervezeti védekezőmechanizmus, emlősökben az RNSi élettani szerepe még nincs teljesen tisztázva. Az RNSi-t rövid kettős szálú interferáló RNS-ek (short interfering RNA, siRNS) irányítják. A jelen cikkben összefoglaljuk az RNSi történetét és mechanizmusát, az siRNS-ek szerkezete és hatékonysága közötti összefüggéseket, a célsejtbe való bejuttatás virális és nem virális módjait. Az siRNS-ek klinikai alkalmazásának legfontosabb akadálya az in vivo alkalmazás. Bár a hidrodinamikus kezelés állatokban hatékony, embereknél nem alkalmazható. Lehetőséget jelent viszont a szervspecifikus katéterezés. A szintetizált siRNS-ek ismert mellékhatásait szintén tárgyaljuk. Bár a génterápia ezen új területén számos problémával kell szembenézni, a sikeres in vitro és in vivo kísérletek reményt jelentenek emberi betegségek siRNS-sel történő kezelésére.


2020 ◽  
Vol 17 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Xuan Chen ◽  
Sumei Zhang ◽  
Peipei Shi ◽  
Yangli Su ◽  
Dong Zhang ◽  
...  

Objective: Ischemia-reperfusion (I/R) injury is a pathological feature of ischemic stroke. This study investigated the regulatory role of miR-485-5p in I/R injury. Methods: SH-SY5Y cells were induced with oxygen and glucose deprivation/reoxygenation (OGD/R) to mimic I/R injury in vitro. Cells were transfected with designated constructs (miR-485- 5p mimics, miR-485-5p inhibitor, lentiviral vectors overexpressing Rac1 or their corresponding controls). Cell viability was evaluated using the MTT assay. The concentrations of lactate dehydrogenase, malondialdehyde, and reactive oxygen species were detected to indicate the degree of oxidative stress. Flow cytometry and caspase-3 activity assay were used for apoptosis assessment. Dual-luciferase reporter assay was performed to confirm that Rac family small GTPase 1 (Rac1) was a downstream gene of miR-485-5p. Results: OGD/R resulted in decreased cell viability, elevated oxidative stress, increased apoptosis, and downregulated miR-485-5p expression in SH-SY5Y cells. MiR-485-5p upregulation alleviated I/R injury, evidenced by improved cell viability, decreased oxidative markers, and reduced apoptotic rate. OGD/R increased the levels of Rac1 and neurogenic locus notch homolog protein 2 (Notch2) signaling-related proteins in cells with normal miR-485-5p expression, whereas miR- 485-5p overexpression successfully suppressed OGD/R-induced upregulation of these proteins. Furthermore, the delivery of vectors overexpressing Rac1 in miR-485-5p mimics-transfected cells reversed the protective effect of miR-485-5p in cells with OGD/R-induced injury. Conclusion: This study showed that miR-485-5p protected cells following I/R injury via targeting Rac1/Notch2 signaling suggest that targeted upregulation of miR-485-5p might be a promising therapeutic option for the protection against I/R injury.


Sign in / Sign up

Export Citation Format

Share Document