scholarly journals Ecoepidemiology and Complete Genome Comparison of Different Strains of Severe Acute Respiratory Syndrome-Related Rhinolophus Bat Coronavirus in China Reveal Bats as a Reservoir for Acute, Self-Limiting Infection That Allows Recombination Events

2010 ◽  
Vol 84 (6) ◽  
pp. 2808-2819 ◽  
Author(s):  
Susanna K. P. Lau ◽  
Kenneth S. M. Li ◽  
Yi Huang ◽  
Chung-Tong Shek ◽  
Herman Tse ◽  
...  

ABSTRACT Despite the identification of severe acute respiratory syndrome-related coronavirus (SARSr-CoV) in Rhinolophus Chinese horseshoe bats (SARSr-Rh-BatCoV) in China, the evolutionary and possible recombination origin of SARSr-CoV remains undetermined. We carried out the first study to investigate the migration pattern and SARSr-Rh-BatCoV genome epidemiology in Chinese horseshoe bats during a 4-year period. Of 1,401 Chinese horseshoe bats from Hong Kong and Guangdong, China, that were sampled, SARSr-Rh-BatCoV was detected in alimentary specimens from 130 (9.3%) bats, with peak activity during spring. A tagging exercise of 511 bats showed migration distances from 1.86 to 17 km. Bats carrying SARSr-Rh-BatCoV appeared healthy, with viral clearance occurring between 2 weeks and 4 months. However, lower body weights were observed in bats positive for SARSr-Rh-BatCoV, but not Rh-BatCoV HKU2. Complete genome sequencing of 10 SARSr-Rh-BatCoV strains showed frequent recombination between different strains. Moreover, recombination was detected between SARSr-Rh-BatCoV Rp3 from Guangxi, China, and Rf1 from Hubei, China, in the possible generation of civet SARSr-CoV SZ3, with a breakpoint at the nsp16/spike region. Molecular clock analysis showed that SARSr-CoVs were newly emerged viruses with the time of the most recent common ancestor (tMRCA) at 1972, which diverged between civet and bat strains in 1995. The present data suggest that SARSr-Rh-BatCoV causes acute, self-limiting infection in horseshoe bats, which serve as a reservoir for recombination between strains from different geographical locations within reachable foraging range. Civet SARSr-CoV is likely a recombinant virus arising from SARSr-CoV strains closely related to SARSr-Rh-BatCoV Rp3 and Rf1. Such frequent recombination, coupled with rapid evolution especially in ORF7b/ORF8 region, in these animals may have accounted for the cross-species transmission and emergence of SARS.

2005 ◽  
Vol 79 (3) ◽  
pp. 1595-1604 ◽  
Author(s):  
Leen Vijgen ◽  
Els Keyaerts ◽  
Elien Moës ◽  
Inge Thoelen ◽  
Elke Wollants ◽  
...  

ABSTRACT Coronaviruses are enveloped, positive-stranded RNA viruses with a genome of approximately 30 kb. Based on genetic similarities, coronaviruses are classified into three groups. Two group 2 coronaviruses, human coronavirus OC43 (HCoV-OC43) and bovine coronavirus (BCoV), show remarkable antigenic and genetic similarities. In this study, we report the first complete genome sequence (30,738 nucleotides) of the prototype HCoV-OC43 strain (ATCC VR759). Complete genome and open reading frame (ORF) analyses were performed in comparison to the BCoV genome. In the region between the spike and membrane protein genes, a 290-nucleotide deletion is present, corresponding to the absence of BCoV ORFs ns4.9 and ns4.8. Nucleotide and amino acid similarity percentages were determined for the major HCoV-OC43 ORFs and for those of other group 2 coronaviruses. The highest degree of similarity is demonstrated between HCoV-OC43 and BCoV in all ORFs with the exception of the E gene. Molecular clock analysis of the spike gene sequences of BCoV and HCoV-OC43 suggests a relatively recent zoonotic transmission event and dates their most recent common ancestor to around 1890. An evolutionary rate in the order of 4 × 10−4 nucleotide changes per site per year was estimated. This is the first animal-human zoonotic pair of coronaviruses that can be analyzed in order to gain insights into the processes of adaptation of a nonhuman coronavirus to a human host, which is important for understanding the interspecies transmission events that led to the origin of the severe acute respiratory syndrome outbreak.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Andreas F. Wendel ◽  
Martin Kaase ◽  
Ingo B. Autenrieth ◽  
Silke Peter ◽  
Philipp Oberhettinger ◽  
...  

ABSTRACT The metallo-beta-lactamase GIM-1 has been found in various bacterial host species nearly exclusively in western Germany. However, not much is known about the epidemiology of GIM-1-positive Serratia marcescens. Here we report on a surprisingly protracted regional dissemination. In-hospital transmission was investigated by using conventional epidemiological tools to identify spatiotemporal links. Strain typing was performed using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). Bayesian phylogeny was used to infer the time axis of the observed occurrence. Thirteen S. marcescens strains from 10 patients from 6 different German hospitals were investigated. Suspected in-hospital transmissions were confirmed by molecular typing at a higher resolution by WGS than by PFGE. A detailed sequence analysis demonstrated the spread of one predominant strain variant but also provided evidence for transfer of the bla GIM-1 gene cassette between different strains. A Bayesian phylogenetic analysis showed that the most recent common ancestor of the identified clonal cluster could be dated back to April 1993 (95% highest posterior density interval, January 1973 to March 2003) and that this strain might have already harbored the bla GIM-1 at that time and, therewith, years before the first detection of this resistance gene in clinical specimens. This study shows a long-standing clonal and plasmid-mediated expansion of GIM-1-producing S. marcescens that might have gone unnoticed in the absence of a standardized and effective molecular screening for carbapenemases. The systematic and early detection of resistance is thus highly advisable, especially for the prevention of potentially long-term dissemination that may progress beyond control.


2019 ◽  
Author(s):  
Zhizhou Tan ◽  
Gabriel Gonzalez ◽  
Jinliang Sheng ◽  
Jianmin Wu ◽  
Fuqiang Zhang ◽  
...  

AbstractPolyomaviruses (PyVs) are small, double-stranded DNA tumor viruses carried by diverse vertebrates. PyVs have previously been considered highly host restricted in mammalian hosts, with host-switching events thought rare or nonexistent. Prior investigations have revealed short-range host-switching events of PyVs in two different African bat species within the horseshoe bat genusRhinolophus. Herein, we have conducted a systematic investigation of PyVs in 1,083 archived bat samples collected from five provinces across China, and identified 192 PyVs from 186 bats from 15 host species within 6 families (Rhinolophidae, Vespertilionidae, Hipposideridae, Emballonuridae, Miniopteridae and Pteropodidae) representing 28 newly-described PyVs, indicative of extensive genetic diversity of bat PyVs. Surprisingly, two PyVs were identified in multiple bat species from different families, and another PyV clustered phylogenetically with PyVs carried by bats from a different host family, indicative of three inter-family PyV host-switching events. The time to most recent common ancestor (tMRCA) of the three events was estimated at 0.02-11.6 million years ago (MYA), which is inconsistent with the estimated tMRCA of their respective bat hosts (36.3-66.7 MYA), and is most parsimoniously explained by host-switching events. PyVs identified from geographically separated Chinese horseshoe bat species in the present study showed close genetic identities, and clustered with each other and with PyVs from African horseshoe bats, allowing assessment of the effects of positive selection in VP1 within the horseshoe bat family Rhinolophidae. Correlation analysis indicated that co-evolution with their hosts contributed much more to evolutionary divergence of PyV than geographic distance. In conclusion, our findings provide the first evidence of inter-family host-switching events of PyV in mammals and challenge the prevailing evolutionary paradigm for strict host restriction of mammalian PyVs.Author summarySince the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered both genetically stable and highly host-restricted in their mammalian hosts. In this study, we have identified multiple cases of host-switching events of PyVs by large scale surveillance in diverse bat species collected in China. These host-switching events occurred between bat families living in the same colony, indicating that a large population with frequent contacts between different bat species may represent an ecological niche facilitating PyV host-switching. The cases studied involved members of bats from several families, including horseshoe bats, which were previously found to harbor a number of highly virulent viruses to both humans and domestic animals. Our findings have provided evidence that even highly host-specific DNA viruses can transmit between bats of different species and indicate an increased propensity for spillover events involving horseshoe bats. We propose an evolutionary scheme for bat-borne PyVs in which intra-host divergence and host-switching has generated the diverse PyVs in present day bats. This scheme provides a useful model to study the evolution of PyVs in other hosts and, potentially, the modeling of bat zoonoses and the transmission of other DNA viruses in other mammals, including humans.


2020 ◽  
Author(s):  
Armin Scheben ◽  
Olivia Mendivil Ramos ◽  
Melissa Kramer ◽  
Sara Goodwin ◽  
Sara Oppenheim ◽  
...  

AbstractBats are exceptional among mammals for harbouring diverse pathogens and for their robust immune systems. In addition, bats are unusually long-lived and show low rates of cancer. Contiguous and complete reference genomes are needed to determine the genetic basis of these adaptations and establish bats as models for research into mammalian health. Here we sequenced and analysed the genomes of the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus). We sequenced these two species using a mix of Illumina and Oxford Nanopore Technologies (ONT), assembling draft genomes with some of the highest contig N50s (28-29Mb) of bat genomes to date. Work is in progress to increase the base-level accuracies of these genomes. We conducted gene annotation and identified a set of 10,928 orthologs from bats and mammalian outgroups including humans, rodents, horses, pigs, and dogs. To detect positively selected genes as well as lineage-specific gene gains and losses, we carried out comprehensive branch-site likelihood ratio tests and gene family size analyses. Our analysis found signatures of rapid evolution in the innate immune response genes of bats, and evidence of past infections with diverse viral clades in Artibeus jamaicensis and Pteronotus mesoamericanus. We additionally found evidence of positive selection of tumor suppressors, which may play a role in the low cancer rates, in the most recent common ancestor of bats. These new genomic resources enable insights into the extraordinary adaptations of bats, with implications for mammalian evolutionary studies and public health.


2013 ◽  
Vol 9 (2) ◽  
pp. 20121098 ◽  
Author(s):  
Sebastian Klaus ◽  
José C. E. Mendoza ◽  
Jia Huan Liew ◽  
Martin Plath ◽  
Rudolf Meier ◽  
...  

This study asked whether reductive traits in cave organisms evolve at a slower pace (suggesting neutral evolution under relaxed selection) than constructive changes, which are likely to evolve under directional selection. We investigated 11 subterranean and seven surface populations of Sundathelphusa freshwater crabs on Bohol Island, Philippines, and examined constructive traits associated with improved food finding in darkness (increased leg and setae length) and reductive traits (reduced cornea size and eyestalk length). All changes occurred rapidly, given that the age of the most recent common ancestor was estimated to be 722–271 ka based on three mitochondrial markers. In order to quantify the speed of character change, we correlated the degree of morphological change with genetic distances between surface and subterranean individuals. The temporal pattern of character change following the transition to subterranean life was indistinguishable for constructive and reductive traits, characterized by an immediate onset and rapid evolutionary change. We propose that the evolution of these reductive traits—just like constructive traits—is most likely driven by strong directional selection.


2015 ◽  
Vol 89 (20) ◽  
pp. 10532-10547 ◽  
Author(s):  
Susanna K. P. Lau ◽  
Yun Feng ◽  
Honglin Chen ◽  
Hayes K. H. Luk ◽  
Wei-Hong Yang ◽  
...  

ABSTRACTDespite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-relatedRhinolophus sinicusbat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The highKa/Ksratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS-CoV ORF8 originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission.IMPORTANCEAlthough horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited <40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination.


2021 ◽  
Author(s):  
Svetoslav N Slavov ◽  
Jose Patane ◽  
Rafael S Bezerra ◽  
Marta Giovanetti ◽  
Vagner Fonseca ◽  
...  

Sao Paulo State, the most populous area in Brazil, currently experiences a second wave of the COVID-19 pandemic which overwhelmed the healthcare system. Recently, due to the paucity of SARS-CoV-2 complete genome sequences, we established a Network for Pandemic Alert of Emerging SARS-CoV-2 Variants to rapidly understand the spread of SARS-CoV-2 and monitor in nearly real-time the circulating SARS-CoV-2 variants into the state. Through full genome analysis of 217 SARS-CoV-2 complete genome sequences obtained from the largest regional health departments we were able to identify the co-circulation of multiple SARS-CoV-2 lineages such as i) B.1.1 (0.92%), ii) B.1.1.1 (0.46%), iii) B.1.1.28 (25.34%), iv) B.1.1.7 (5.99%), v) B.1.566 (1.84%), vi) P.1 (64.05%), and P.2 (0.92%). Further our analysis allowed the detection, for the first time in Brazil of the South African variant of concern (VOC), the B.1.351 (501Y.V2) (0.46%). The identified lineage was characterized by the presence of the following mutations: ORF1ab: T265I, R724K, S1612L, K1655N, K3353R, SGF 3675_F3677del, P4715L, E5585D; Spike: D80A, D215G, L242_L244del, A262D, K417N, E484K, N501Y, D614G, A701V, C1247F; ORF3a: Q57H, S171L, E: P71L; ORF7b: Y10F, N: T205I; ORF14: L52F. Origin of the most recent common ancestor of this genomic variant was inferred to be between middle October to late December 2020. Analysis of generated sequences demonstrated the predominance of the P.1 lineage and allowed the early detection of the South African strain for the first time in Brazil. Our findings highlight the importance to increase active monitoring to ensure the rapid detection of new SARS-CoV-2 variants with a potential impact in pandemic control and vaccination strategies.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 1187-1198 ◽  
Author(s):  
Mikkel H Schierup ◽  
Xavier Vekemans ◽  
Freddy B Christiansen

Abstract Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model, alleles act codominantly in both pollen and style, in the SSIdom model, alleles form a dominance hierarchy, and in SSIdomcod, alleles are codominant in the style and show a dominance hierarchy in the pollen. Coalescence times of alleles rarely differ more than threefold from those under gametophytic self-incompatibility, and transspecific polymorphism is therefore expected to be equally common. The previously reported directional turnover process of alleles in the SSIdomcod model results in coalescence times lower and substitution rates higher than those in the other models. The SSIdom model assumes strong asymmetries in allelic action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles, including interspecific comparisons, is discussed.


Author(s):  
Wenjun Cheng ◽  
Tianjiao Ji ◽  
Shuaifeng Zhou ◽  
Yong Shi ◽  
Lili Jiang ◽  
...  

AbstractEchovirus 6 (E6) is associated with various clinical diseases and is frequently detected in environmental sewage. Despite its high prevalence in humans and the environment, little is known about its molecular phylogeography in mainland China. In this study, 114 of 21,539 (0.53%) clinical specimens from hand, foot, and mouth disease (HFMD) cases collected between 2007 and 2018 were positive for E6. The complete VP1 sequences of 87 representative E6 strains, including 24 strains from this study, were used to investigate the evolutionary genetic characteristics and geographical spread of E6 strains. Phylogenetic analysis based on VP1 nucleotide sequence divergence showed that, globally, E6 strains can be grouped into six genotypes, designated A to F. Chinese E6 strains collected between 1988 and 2018 were found to belong to genotypes C, E, and F, with genotype F being predominant from 2007 to 2018. There was no significant difference in the geographical distribution of each genotype. The evolutionary rate of E6 was estimated to be 3.631 × 10-3 substitutions site-1 year-1 (95% highest posterior density [HPD]: 3.2406 × 10-3-4.031 × 10-3 substitutions site-1 year-1) by Bayesian MCMC analysis. The most recent common ancestor of the E6 genotypes was traced back to 1863, whereas their common ancestor in China was traced back to around 1962. A small genetic shift was detected in the Chinese E6 population size in 2009 according to Bayesian skyline analysis, which indicated that there might have been an epidemic around that year.


Author(s):  
Ya-Fang Hu ◽  
Li-Ping Jia ◽  
Fang-Yuan Yu ◽  
Li-Ying Liu ◽  
Qin-Wei Song ◽  
...  

Abstract Background Coxsackievirus A16 (CVA16) is one of the major etiological agents of hand, foot and mouth disease (HFMD). This study aimed to investigate the molecular epidemiology and evolutionary characteristics of CVA16. Methods Throat swabs were collected from children with HFMD and suspected HFMD during 2010–2019. Enteroviruses (EVs) were detected and typed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and RT-PCR. The genotype, evolutionary rate, the most recent common ancestor, population dynamics and selection pressure of CVA16 were analyzed based on viral protein gene (VP1) by bioinformatics software. Results A total of 4709 throat swabs were screened. EVs were detected in 3180 samples and 814 were CVA16 positive. More than 81% of CVA16-positive children were under 5 years old. The prevalence of CVA16 showed obvious periodic fluctuations with a high level during 2010–2012 followed by an apparent decline during 2013–2017. However, the activities of CVA16 increased gradually during 2018–2019. All the Beijing CVA16 strains belonged to sub-genotype B1, and B1b was the dominant strain. One B1c strain was detected in Beijing for the first time in 2016. The estimated mean evolutionary rate of VP1 gene was 4.49 × 10–3 substitution/site/year. Methionine gradually fixed at site-23 of VP1 since 2012. Two sites were detected under episodic positive selection, one of which (site-223) located in neutralizing linear epitope PEP71. Conclusions The dominant strains of CVA16 belonged to clade B1b and evolved in a fast evolutionary rate during 2010–2019 in Beijing. To provide more favorable data for HFMD prevention and control, it is necessary to keep attention on molecular epidemiological and evolutionary characteristics of CVA16.


Sign in / Sign up

Export Citation Format

Share Document