scholarly journals Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus

2016 ◽  
Vol 90 (7) ◽  
pp. 3794-3799 ◽  
Author(s):  
Eefje J. A. Schrauwen ◽  
Mathilde Richard ◽  
David F. Burke ◽  
Guus F. Rimmelzwaan ◽  
Sander Herfst ◽  
...  

Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission.

2020 ◽  
Vol 8 (5) ◽  
pp. 778
Author(s):  
Andrew T. Bisset ◽  
Gerard F. Hoyne

Influenza viruses arise from animal reservoirs, and have the potential to cause pandemics. In 2013, low pathogenic novel avian influenza A(H7N9) viruses emerged in China, resulting from the reassortment of avian-origin viruses. Following evolutionary changes, highly pathogenic strains of avian influenza A(H7N9) viruses emerged in late 2016. Changes in pathogenicity and virulence of H7N9 viruses have been linked to potential mutations in the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), as well as the viral polymerase basic protein 2 (PB2). Recognizing that effective viral transmission of the influenza A virus (IAV) between humans requires efficient attachment to the upper respiratory tract and replication through the viral polymerase complex, experimental evidence demonstrates the potential H7N9 has for increased binding affinity and replication, following specific amino acid substitutions in HA and PB2. Additionally, the deletion of extended amino acid sequences in the NA stalk length was shown to produce a significant increase in pathogenicity in mice. Research shows that significant changes in transmissibility, pathogenicity and virulence are possible after one or a few amino acid substitutions. This review aims to summarise key findings from that research. To date, all strains of H7N9 viruses remain restricted to avian reservoirs, with no evidence of sustained human-to-human transmission, although mutations in specific viral proteins reveal the efficacy with which these viruses could evolve into a highly virulent and infectious, human-to-human transmitted virus.


Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Jefferson J. S. Santos ◽  
Eugenio J. Abente ◽  
Adebimpe O. Obadan ◽  
Andrew J. Thompson ◽  
Lucas Ferreri ◽  
...  

ABSTRACT The hemagglutinin (HA), a glycoprotein on the surface of influenza A virus (IAV), initiates the virus life cycle by binding to terminal sialic acid (SA) residues on host cells. The HA gradually accumulates amino acid substitutions that allow IAV to escape immunity through a mechanism known as antigenic drift. We recently confirmed that a small set of amino acid residues are largely responsible for driving antigenic drift in swine-origin H3 IAV. All identified residues are located adjacent to the HA receptor binding site (RBS), suggesting that substitutions associated with antigenic drift may also influence receptor binding. Among those substitutions, residue 145 was shown to be a major determinant of antigenic evolution. To determine whether there are functional constraints to substitutions near the RBS and their impact on receptor binding and antigenic properties, we carried out site-directed mutagenesis experiments at the single-amino-acid level. We generated a panel of viruses carrying substitutions at residue 145 representing all 20 amino acids. Despite limited amino acid usage in nature, most substitutions at residue 145 were well tolerated without having a major impact on virus replication in vitro. All substitution mutants retained receptor binding specificity, but the substitutions frequently led to decreased receptor binding. Glycan microarray analysis showed that substitutions at residue 145 modulate binding to a broad range of glycans. Furthermore, antigenic characterization identified specific substitutions at residue 145 that altered antibody recognition. This work provides a better understanding of the functional effects of amino acid substitutions near the RBS and the interplay between receptor binding and antigenic drift. IMPORTANCE The complex and continuous antigenic evolution of IAVs remains a major hurdle for vaccine selection and effective vaccination. On the hemagglutinin (HA) of the H3N2 IAVs, the amino acid substitution N 145 K causes significant antigenic changes. We show that amino acid 145 displays remarkable amino acid plasticity in vitro, tolerating multiple amino acid substitutions, many of which have not yet been observed in nature. Mutant viruses carrying substitutions at residue 145 showed no major impairment in virus replication in the presence of lower receptor binding avidity. However, their antigenic characterization confirmed the impact of the 145 K substitution in antibody immunodominance. We provide a better understanding of the functional effects of amino acid substitutions implicated in antigenic drift and its consequences for receptor binding and antigenicity. The mutation analyses presented in this report represent a significant data set to aid and test the ability of computational approaches to predict binding of glycans and in antigenic cartography analyses.


2005 ◽  
Vol 79 (17) ◽  
pp. 11239-11246 ◽  
Author(s):  
E. G. M. Berkhoff ◽  
E. de Wit ◽  
M. M. Geelhoed-Mieras ◽  
A. C. M. Boon ◽  
J. Symons ◽  
...  

ABSTRACT Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in CTL epitopes. Also for influenza A viruses a number of amino acid substitutions in the nucleoprotein (NP) have been associated with escape from CTL. However, other previously identified influenza A virus CTL epitopes are highly conserved, including the immunodominant HLA-A*0201-restricted epitope from the matrix protein, M158-66. We hypothesized that functional constraints were responsible for the conserved nature of influenza A virus CTL epitopes, limiting escape from CTL. To assess the impact of amino acid substitutions in conserved epitopes on viral fitness and recognition by specific CTL, we performed a mutational analysis of CTL epitopes. Both alanine replacements and more conservative substitutions were introduced at various positions of different influenza A virus CTL epitopes. Alanine replacements for each of the nine amino acids of the M158-66 epitope were tolerated to various extents, except for the anchor residue at the second position. Substitution of anchor residues in other influenza A virus CTL epitopes also affected viral fitness. Viable mutant viruses were used in CTL recognition experiments. The results are discussed in the light of the possibility of influenza viruses to escape from specific CTL. It was speculated that functional constraints limit variation in certain epitopes, especially at anchor residues, explaining the conserved nature of these epitopes.


2016 ◽  
Vol 90 (13) ◽  
pp. 5928-5938 ◽  
Author(s):  
Benjamin Mänz ◽  
Miranda de Graaf ◽  
Ramona Mögling ◽  
Mathilde Richard ◽  
Theo M. Bestebroer ◽  
...  

ABSTRACTA strong restriction of the avian influenza A virus polymerase in mammalian cells generally limits viral host-range switching. Although substitutions like E627K in the PB2 polymerase subunit can facilitate polymerase activity to allow replication in mammals, many human H5N1 and H7N9 viruses lack this adaptive substitution. Here, several previously unknown, naturally occurring, adaptive substitutions in PB2 were identified by bioinformatics, and their enhancing activity was verified usingin vitroassays. Adaptive substitutions enhanced polymerase activity and virus replication in mammalian cells for avian H5N1 and H7N9 viruses but not for a partially human-adapted H5N1 virus. Adaptive substitutions toward basic amino acids were frequent and were mostly clustered in a putative RNA exit channel in a polymerase crystal structure. Phylogenetic analysis demonstrated divergent dependency of influenza viruses on adaptive substitutions. The novel adaptive substitutions found in this study increase basic understanding of influenza virus host adaptation and will help in surveillance efforts.IMPORTANCEInfluenza viruses from birds jump the species barrier into humans relatively frequently. Such influenza virus zoonoses may pose public health risks if the virus adapts to humans and becomes a pandemic threat. Relatively few amino acid substitutions—most notably in the receptor binding site of hemagglutinin and at positions 591 and 627 in the polymerase protein PB2—have been identified in pandemic influenza virus strains as determinants of host adaptation, to facilitate efficient virus replication and transmission in humans. Here, we show that substantial numbers of amino acid substitutions are functionally compensating for the lack of the above-mentioned mutations in PB2 and could facilitate influenza virus emergence in humans.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Meng Hu ◽  
Guohua Yang ◽  
Jennifer DeBeauchamp ◽  
Jeri Carol Crumpton ◽  
Hyunsuh Kim ◽  
...  

Pandemic influenza A viruses can emerge from swine, an intermediate host that supports adaptation of human-preferred receptor-binding specificity by the hemagglutinin (HA) surface antigen. Other HA traits necessary for pandemic potential are poorly understood. For swine influenza viruses isolated in 2009–2016, gamma-clade viruses had less stable HA proteins (activation pH 5.5–5.9) than pandemic clade (pH 5.0–5.5). Gamma-clade viruses replicated to higher levels in mammalian cells than pandemic clade. In ferrets, a model for human adaptation, a relatively stable HA protein (pH 5.5–5.6) was necessary for efficient replication and airborne transmission. The overall airborne transmission frequency in ferrets for four isolates tested was 42%, and isolate G15 airborne transmitted 100% after selection of a variant with a stabilized HA. The results suggest swine influenza viruses containing both a stabilized HA and alpha-2,6 receptor binding in tandem pose greater pandemic risk. Increasing evidence supports adding HA stability to pre-pandemic risk assessment algorithms.


2015 ◽  
Vol 89 (7) ◽  
pp. 3763-3775 ◽  
Author(s):  
Björn F. Koel ◽  
Ramona Mögling ◽  
Salin Chutinimitkul ◽  
Pieter L. Fraaij ◽  
David F. Burke ◽  
...  

ABSTRACTThe majority of currently circulating influenza A(H1N1) viruses are antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as population immunity increases. Amino acid substitutions in the hemagglutinin protein can result in escape from neutralizing antibodies, affect viral fitness, and change receptor preference. In this study, we constructed mutants with substitutions in the hemagglutinin of A/Netherlands/602/09 in an attenuated backbone to explore amino acid changes that may contribute to emergence of antigenic variants in the human population. Our analysis revealed that single substitutions affecting the loop that consists of amino acid positions 151 to 159 located adjacent to the receptor binding site caused escape from ferret and human antibodies elicited after primary A(H1N1)pdm09 virus infection. The majority of these substitutions resulted in similar or increased replication efficiencyin vitrocompared to that of the virus carrying the wild-type hemagglutinin and did not result in a change of receptor preference. However, none of the substitutions was sufficient for escape from the antibodies in sera from individuals that experienced both seasonal and pandemic A(H1N1) virus infections. These results suggest that antibodies directed against epitopes on seasonal A(H1N1) viruses contribute to neutralization of A(H1N1)pdm09 antigenic variants, thereby limiting the number of possible substitutions that could lead to escape from population immunity.IMPORTANCEInfluenza A viruses can cause significant morbidity and mortality in humans. Amino acid substitutions in the hemagglutinin protein can result in escape from antibody-mediated neutralization. This allows the virus to reinfect individuals that have acquired immunity to previously circulating strains through infection or vaccination. To date, the vast majority of A(H1N1)pdm09 strains remain antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as a result of increasing population immunity. We show that single amino acid substitutions near the receptor binding site were sufficient to escape from antibodies specific for A(H1N1)pdm09 viruses but not from antibodies elicited in response to infections with seasonal A(H1N1) and A(H1N1)pdm09 viruses. This study identified substitutions in A(H1N1)pdm09 viruses that support escape from population immunity but also suggested that the number of potential escape variants is limited by previous exposure to seasonal A(H1N1) viruses.


2020 ◽  
Vol 69 (7) ◽  
pp. 986-998
Author(s):  
Neli Korsun ◽  
Rodney Daniels ◽  
Svetla Angelova ◽  
Burcu Ermetal ◽  
Iliyana Grigorova ◽  
...  

Introduction. Influenza viruses evolve rapidly and change their antigenic characteristics, necessitating biannual updates of flu vaccines. Aim. The aim of this study was to characterize influenza viruses circulating in Bulgaria during the 2018/2019 season and to identify amino acid substitutions in them that might impact vaccine effectiveness. Methodology. Typing/subtyping of influenza viruses were performed using real-time Reverse Transcription-PCR (RT-PCR) and results of phylogenetic and amino acid sequence analyses of influenza strains are presented. Results. A(H1N1)pdm09 (66 %) predominated over A(H3N2) (34 %) viruses, with undetected circulation of B viruses in the 2018/2019 season. All A(H1N1)pdm09 viruses studied fell into the recently designated 6B.1A subclade with over 50 % falling in four subgroups: 6B.1A2, 6B.1A5, 6B.1A6 and 6B.1A7. Analysed A(H3N2) viruses belonged to subclades 3C.2a1b and 3C.2a2. Amino acid sequence analysis of 36 A(H1N1)pdm09 isolates revealed the presence of six–ten substitutions in haemagglutinin (HA), compared to the A/Michigan/45/2015 vaccine virus, three of which occurred in antigenic sites Sa and Cb, together with four–nine changes at positions in neuraminidase (NA), and a number of substitutions in internal proteins. HA1 D222N substitution, associated with increased virulence, was identified in two A(H1N1)pdm09 viruses. Despite the presence of several amino acid substitutions, A(H1N1)pdm09 viruses remained antigenically similar to the vaccine virus. The 28 A(H3N2) viruses characterized carried substitutions in HA, including some in antigenic sites A, B, C and E, in NA and internal protein sequences. Conclusion. The results of this study showed the genetic diversity of circulating influenza viruses and the need for continuous antigenic and molecular surveillance.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 78 ◽  
Author(s):  
Aharona Glatman-Freedman ◽  
Rakefet Pando ◽  
Hanna Sefty ◽  
Itay Omer ◽  
Alina Rosenberg ◽  
...  

Background: Influenza A (H3N2) clade 3C.3a was the predominant influenza virus in Israel throughout the 2018-2019 season, constituting a drift from the influenza A (H3N2) vaccine. We estimated the end-of season vaccine effectiveness (VE) by age, among community patients with influenza-like illness (ILI), considering the hemagglutinin (HA) gene mutations and amino acid substitutions of influenza A (H3N2) viruses detected. Methods: Nose-throat samples were analyzed for the presence of influenza virus, type/subtype, and HA gene sequence. HA gene sequences and amino acid substitutions were compared to the influenza A/Singapore/INFIMH-16-0019/2016 (H3N2)-like 2018-2019 vaccine virus, and a phylogenetic tree was generated. Influenza VE against influenza A (H3N2) was estimated using the test-negative design. VE was estimated by age group and by 15 year moving age intervals. Results: In total, 90% of the influenza A (H3N2) viruses belonged to the 3C.3a clade, constituting a unique situation in the northern hemisphere. Adjusted all-age influenza A (H3N2) VE was −3.5% (95% CI: −51.2 to 29.1). Although adjusted VEs were very low among infants, children, and young adults, a VE of 45% (95% CI: −19.2 to 74.6) was estimated among adults aged ≥45 years old. Conclusions: The higher VE point estimates among older adults may be related to previous exposure to similar influenza viruses.


Sign in / Sign up

Export Citation Format

Share Document