scholarly journals The Interleukin-17 Gene of Herpesvirus Saimiri

1998 ◽  
Vol 72 (7) ◽  
pp. 5797-5801 ◽  
Author(s):  
Andrea Knappe ◽  
Christian Hiller ◽  
Henk Niphuis ◽  
François Fossiez ◽  
Mathias Thurau ◽  
...  

ABSTRACT In comparison to wild-type herpesvirus saimiri, viral interleukin-17 gene knockout mutants have unaltered behavior regarding viral replication, T-cell transformation in vitro, and pathogenicity in cottontop tamarins. Thus, this gene is not required for T-cell lymphoma induction but may contribute to apathogenic viral persistence in the natural host, the squirrel monkey.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 38-39
Author(s):  
Tyler A. Herek ◽  
Alyssa Bouska ◽  
Waseem G. Lone ◽  
Tayla B. Heavican ◽  
Catalina Amador ◽  
...  

Background Mutational profiling of angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma not otherwise specified (PTCL-NOS) has revealed recurrent mutations in DNMT3A, a de novo methyltransferase. DNMT3A catalyzes the conversion of cytosine to 5-methylcytosine (5-mC) while interacting with histones and transcription factors to influence gene expression. While the DNMT3A mutational profile in PTCL entities indicates loss-of-function, hotspot change-of-function mutations (e.g., DNMT3AR882H/C) have been observed with their frequency differing between PTCL entities. Despite the high occurrence of DNMT3A mutations in PTCLs (~30% of cases), their functional consequences have not been extensively studied. Herein, we examined DNMT3A mutations in AITL and the novel molecular subgroups of PTCL-NOS (i.e., PTCL-TBX21 and PTCL-GATA3) and observed distinct biological and prognostic significance associated with DNMT3A mutations in the PTCL-TBX21 subgroup. Methods PTCL-NOS cases (n = 141) were utilized following PTCL-TFH exclusion. Using previously described molecular classification methods, cases were classified as PTCL-TBX21 (n = 80) or PTCL-GATA3 (n = 61). A separate cohort of AITL cases (n = 176) were included for comparative purposes. Clinical outcome data were assessed with the Kaplan-Meier method. Mutation data were generated from DNA-sequencing (n = 224) or RNA-sequencing methods (n = 46). Gene expression comparisons were conducted using BRB-ArrayTools. Immune-cell signatures were generated from the CIBERSORT and/or xCell computational tools. 5-mC DNA immunoprecipitation sequencing (MeDIP-Seq) was performed on available PTCL-TBX21 cases (n = 7) or healthy tonsil controls (n = 2). Four of these cases carried DNMT3A mutations (n = 3 DNMT3AR882, n = 1 DNMT3AQ886) while the remaining cases (n = 3) were wild type for DNMT3A. In vitro analyses of ectopic expression of the DNMT3AR882H mutant or DNMT3A knockdown were conducted using healthy-donor CD3+ T-cells or the CD8+ T8ML1 PTCL cell line. Following corrections for false discoveries, p-values < 0.05 were considered significant. Results DNMT3A-mutated PTCL-TBX21 cases had an inferior overall survival, with DNMT3A mutated residues skewed toward the methyltransferase domain. In contrast to the DNMT3A mutation profile seen in AITL, PTCL-TBX21 featured DNMT3AR882H/C mutations at a frequency (30%) similar to other hematological malignancies. Gene expression profiling revealed that DNMT3A-mutant PTCL-TBX21 cases were enriched for activated CD8+ T-cell gene signatures and showed association with the previously described TH1/αβ cytotoxic T-cell lymphoma subgroup. Following MeDIP-Seq, assessment of differentially methylated regions comparing DNMT3AR882/Q886 PTCL-TBX21 cases to wild type found hypomethylation in pathways associated with T-cell activation, TCR signaling, and TH1 responses. In vitro analyses demonstrated that ectopic expression of the DNMT3AR882H mutant or DNMT3A knockdown lead to enhanced proliferation and NF-κB signaling in T8ML1 cells in comparison to control vectors. In primary CD3+ T-cell cultures, ectopic expression of the DNMT3AR882H mutant protein resulted in the preferential outgrowth of CD8+ T-cells. Conclusions Taken together, our findings establish mutations in DNMT3A as a novel prognostic marker in PTCL-TBX21. The integrated expression, methylation, and in vitro findings suggest that disruption of DNMT3A leads toward an activated and cytotoxic phenotype and could potentially drive oncogenic TCR signaling. Clinically, as these cases were associated with the TH1/αβ cytotoxic T-cell lymphoma subgrouping, these findings should be taken into consideration for future treatment strategies regarding PTCL-NOS patients as current standard-of-care treatments may be particularly inadequate in the treatment of PTCLs with cytotoxic phenotype. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 93 (2) ◽  
pp. 330-340 ◽  
Author(s):  
Yuri Kim ◽  
Eun-Kyung Kwon ◽  
Ju-Hong Jeon ◽  
Insuk So ◽  
In-Gyu Kim ◽  
...  

Herpesvirus saimiri (HVS), a T-lymphotropic monkey herpesvirus, induces fulminant T-cell lymphoma in non-natural primate hosts. In addition, it can immortalize human T-cells in vitro. HVS tyrosine kinase-interacting protein (Tip) is an essential viral gene required for T-cell transformation both in vitro and in vivo. In this study, we found that Tip interacts with the STAT6 transcription factor and induces phosphorylation of STAT6 in T-cells. The interaction with STAT6 requires the Tyr127 residue and Lck-binding domain of Tip, which are indispensable for interleukin (IL)-2-independent T-cell transformation by HVS. It was also demonstrated that Tip induces nuclear translocation of STAT6, as well as activation of STAT6-dependent transcription in Jurkat T-cells. Interestingly, the phosphorylated STAT6 mainly colocalized with vesicles containing Tip within T-cells, but was barely detectable in the nucleus. However, nuclear translocation of phospho-STAT6 and transcriptional activation of STAT6 by IL-4 stimulation were not affected significantly in T-cells expressing Tip. Collectively, these findings suggest that the constitutive activation of STAT6 by Tip in T-cells may contribute to IL-2-independent T-cell transformation by HVS.


1998 ◽  
Vol 72 (4) ◽  
pp. 3469-3471 ◽  
Author(s):  
Andrea Knappe ◽  
Mathias Thurau ◽  
Henk Niphuis ◽  
Christian Hiller ◽  
Sabine Wittmann ◽  
...  

ABSTRACT The immediate-early gene ie14/vsag of herpesvirus saimiri has homology with murine superantigens. We compared the pathogenesis of infection with either ie14/vsag deletion mutants or wild-type virus C488 in cottontop tamarin monkeys (Saguinus oedipus). Two weeks after infection, all animals developed acute T-cell lymphomas independently of the presence of the viral ie14/vsag gene.


2005 ◽  
Vol 79 (16) ◽  
pp. 10507-10513 ◽  
Author(s):  
Jens-Christian Albrecht ◽  
Ingrid Müller-Fleckenstein ◽  
Monika Schmidt ◽  
Bernhard Fleckenstein ◽  
Brigitte Biesinger

ABSTRACT Human T cells are transformed to antigen-independent permanent growth in vitro upon infection with herpesvirus saimiri subgroup C strains. The viral oncoproteins required for this process, StpC and Tip, could be replaced by Tio, the oncoprotein of herpesvirus ateles. Here we demonstrate that proliferation of lymphocytes transformed with Tio-recombinant herpesvirus saimiri required the activity of Src family kinases. Src kinases had previously been identified as interaction partners of Tio. This interaction was now shown to be independent of any of the four tyrosine residues of Tio but to be dependent on an SH3-binding motif. Mutations within this motif abrogated the transforming capabilities of Tio-recombinant herpesvirus saimiri. Furthermore, kinase interaction resulted in the phosphorylation of Tio on a single tyrosine residue at position 136. Mutation of this residue in the viral context revealed that this phosphorylation site, but none of the other tyrosine residues, was required for T-cell transformation. These data indicate that the interaction of Tio with a Src kinase is essential for both the initiation and the maintenance of T-cell transformation by recombinant herpesvirus saimiri. The requirement for the tyrosine phosphorylation site at position 136 suggests a role for Tio beyond simple deregulation of the kinase.


1999 ◽  
Vol 73 (12) ◽  
pp. 10551-10555 ◽  
Author(s):  
Armin Ensser ◽  
André Pfinder ◽  
Ingrid Müller-Fleckenstein ◽  
Bernhard Fleckenstein

ABSTRACT The herpesvirus saimiri strain C488 genome contains five genes for small nuclear RNAs, termed herpesvirus saimiri URNAs (or HSURs). Using a cosmid-based approach, all HSURs were precisely deleted from the genome. The mutant virus replicated at levels that were similar to those of wild-type viruses in OMK cells. Although the HSURs are expressed in wild-type virus-transformed human T-cell lines, the deletion does not affect viral transformation in cell culture.


Author(s):  
Amber Loren O. King ◽  
Fatima N. Mirza ◽  
Julia M. Lewis ◽  
Shiela Umlauf ◽  
Yulia Surosteva ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1538 ◽  
Author(s):  
Marta Mellai ◽  
Laura Annovazzi ◽  
Ilaria Bisogno ◽  
Cristiano Corona ◽  
Paola Crociara ◽  
...  

Background: Neuron glial antigen 2 or chondroitin sulphate proteoglycan 4 (NG2/CSPG4) is expressed by immature precursors/progenitor cells and is possibly involved in malignant cell transformation. The aim of this study was to investigate its role on the progression and survival of sixty-one adult gliomas and nine glioblastoma (GB)-derived cell lines. Methods: NG2/CSPG4 protein expression was assessed by immunohistochemistry and immunofluorescence. Genetic and epigenetic alterations were detected by molecular genetic techniques. Results: NG2/CSPG4 was frequently expressed in IDH-mutant/1p19q-codel oligodendrogliomas (59.1%) and IDH-wild type GBs (40%) and rarely expressed in IDH-mutant or IDH-wild type astrocytomas (14.3%). Besides tumor cells, NG2/CSPG4 immunoreactivity was found in the cytoplasm and/or cell membranes of reactive astrocytes and vascular pericytes/endothelial cells. In GB-derived neurospheres, it was variably detected according to the number of passages of the in vitro culture. In GB-derived adherent cells, a diffuse positivity was found in most cells. NG2/CSPG4 expression was significantly associated with EGFR gene amplification (p = 0.0005) and poor prognosis (p = 0.016) in astrocytic tumors. Conclusion: The immunoreactivity of NG2/CSPG4 provides information on the timing of the neoplastic transformation and could have prognostic and therapeutic relevance as a promising tumor-associated antigen for antibody-based immunotherapy in patients with malignant gliomas.


2020 ◽  
Vol 88 (11) ◽  
Author(s):  
Emily M. Siebers ◽  
Elizabeth S. Liedhegner ◽  
Michael W. Lawlor ◽  
Ronald F. Schell ◽  
Dean T. Nardelli

ABSTRACT The symptoms of Lyme disease are caused by inflammation induced by species of the Borrelia burgdorferi sensu lato complex. The various presentations of Lyme disease in the population suggest that differences exist in the intensity and regulation of the host response to the spirochete. Previous work has described correlations between the presence of regulatory T cells and recovery from Lyme arthritis. However, the effects of Foxp3-expressing CD4+ T cells existing prior to, and during, B. burgdorferi infection have not been well characterized. Here, we used C57BL/6 “depletion of regulatory T cell” mice to assess the effects these cells have on the arthritis-resistant phenotype characteristic of this mouse strain. We showed that depletion of regulatory T cells prior to infection with B. burgdorferi resulted in sustained swelling, as well as histopathological changes, of the tibiotarsal joints that were not observed in infected control mice. Additionally, in vitro stimulation of splenocytes from these regulatory T cell-depleted mice resulted in increases in gamma interferon and interleukin-17 production and decreases in interleukin-10 production that were not evident among splenocytes of infected mice in which Treg cells were not depleted. Depletion of regulatory T cells at various times after infection also induced rapid joint swelling. Collectively, these findings provide evidence that regulatory T cells existing at the time of, and possibly after, B. burgdorferi infection may play an important role in limiting the development of arthritis.


2004 ◽  
Vol 72 (8) ◽  
pp. 4432-4438 ◽  
Author(s):  
Xisheng Wang ◽  
Hoil Kang ◽  
Takane Kikuchi ◽  
Yasuhiro Suzuki

ABSTRACT We previously showed the requirement of both T cells and gamma interferon (IFN-γ)-producing non-T cells for the genetic resistance of BALB/c mice to the development of toxoplasmic encephalitis (TE). In order to define the role of IFN-γ production and the perforin-mediated cytotoxicity of T cells in this resistance, we obtained immune T cells from spleens of infected IFN-γ knockout (IFN-γ−/−), perforin knockout (PO), and wild-type BALB/c mice and transferred them into infected and sulfadiazine-treated athymic nude mice, which lack T cells but have IFN-γ-producing non-T cells. Control nude mice that had not received any T cells developed severe TE and died after discontinuation of sulfadiazine treatment due to the reactivation of infection. Animals that had received immune T cells from either wild-type or PO mice did not develop TE and survived. In contrast, nude mice that had received immune T cells from IFN-γ−/− mice developed severe TE and died as early as control nude mice. T cells obtained from the spleens of animals that had received either PO or wild-type T cells produced large amounts of IFN-γ after stimulation with Toxoplasma gondii antigens in vitro. In addition, the amounts of IFN-γ mRNA expressed in the brains of PO T-cell recipients did not differ from those in wild-type T-cell recipients. Furthermore, PO mice did not develop TE after infection, and their IFN-γ production was equivalent to or higher than that of wild-type animals. These results indicate that IFN-γ production, but not perforin-mediated cytotoxic activity, by T cells is required for the prevention of TE in genetically resistant BALB/c mice.


Sign in / Sign up

Export Citation Format

Share Document