scholarly journals Susceptibility of Sheep for Scrapie as Assessed by In Vitro Conversion of Nine Naturally Occurring Variants of PrP

2000 ◽  
Vol 74 (3) ◽  
pp. 1407-1414 ◽  
Author(s):  
Alex Bossers ◽  
Ruth de Vries ◽  
Mari A. Smits

ABSTRACT Polymorphisms in the prion protein (PrP) gene are associated with phenotypic expression differences of transmissible spongiform encephalopathies in animals and humans. In sheep, at least 10 different mutually exclusive polymorphisms are present in PrP. In this study, we determined the efficiency of the in vitro formation of protease-resistant PrP of nine sheep PrP allelic variants in order to gauge the relative susceptibility of sheep for scrapie. No detectable spontaneous protease-resistant PrP formation occurred under the cell-free conditions used. All nine host-encoded cellular PrP (PrPC) variants had distinct conversion efficiencies induced by PrPSc isolated from sheep with three different homozygous PrP genotypes. In general, PrP allelic variants with polymorphisms at either codon 136 (Ala to Val) or codon 141 (Leu to Phe) and phylogenetic wild-type sheep PrPC converted with highest efficiency to protease-resistant forms, which indicates a linkage with a high susceptibility of sheep for scrapie. PrPC variants with polymorphisms at codons 171 (Gln to Arg), 154 (Arg to His), and to a minor extent 112 (Met to Thr) converted with low efficiency to protease-resistant isoforms. This finding indicates a linkage of these alleles with a reduced susceptibility or resistance for scrapie. In addition, PrPSc with the codon 171 (Gln-to-His) polymorphism is the first variant reported to induce higher conversion efficiencies with heterologous rather than homologous PrP variants. The results of this study strengthen our views on polymorphism barriers and have further implications for scrapie control programs by breeding strategies.

2004 ◽  
Vol 76 (5) ◽  
pp. 915-920 ◽  
Author(s):  
P. P. Liberski

Transmissible spongiform encephalopathies (TSEs), currently known as prion diseases, are neurodegenerative disorders of the central nervous system (CNS) caused by an elusive infectious agent called “prion” (proteinaceous infectious particle). These dis orders include: kuru, Creutzfeldt –Jakob disease (CJD) and its variant (vCJD), Gerstmann–Sträussler–Scheinker (GSS) disease and fatal familial insomnia (FFI) in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, and chronic wasting disease (CWD) in cervids. According to the widely accepted “prion hypothesis”, prion is an aggregate of the abnormal isoform of prion protein (PrPSc). Prion protein is a cell-derived glycoprotein (this normal isoform is called PrPc) encoded by a gene on chromosome 20 in humans (PRNP). In familial forms of TSEs, mutations within the ORF of PRNP are linked to the phenotypic expression of the disease. TSEs are important from public health perspective, and “mad cow disease has created the greatest threat to the safety of human food supply in modern times. vCJD threatens the safety of the blood supply worldwide”. Thus, to search for effective therapy is more than an urgent task. In TSEs, aggregates of PrPSc accumulate in the brain in a form of plaques, or synaptic deposits. The conversion of PrPc into PrPSc and subsequent deposits of PrPSc are targets for therapeutic interventions. These include: tricyclic compounds—acridine and phenothiazine derivatives; quinacrine; anti-PrPSc antibodies; dendrimers; polyethylene antibiotics (amphotericin B, MS-8209); pentosan polysulfate; and dextran sulfate. All these compounds are active in many in vitro and in vivo assays, but not proved definitely active in humans. Thus, albeit interesting and promising, the chemotherapy of TSEs is still in the infant phase.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1137
Author(s):  
Laura García-Mendívil ◽  
Diego R. Mediano ◽  
Adelaida Hernaiz ◽  
David Sanz-Rubio ◽  
Francisco J. Vázquez ◽  
...  

Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48–72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Christina D. Orrú ◽  
Jason M. Wilham ◽  
Lynne D. Raymond ◽  
Franziska Kuhn ◽  
Björn Schroeder ◽  
...  

ABSTRACT A key challenge in managing transmissible spongiform encephalopathies (TSEs) or prion diseases in medicine, agriculture, and wildlife biology is the development of practical tests for prions that are at or below infectious levels. Of particular interest are tests capable of detecting prions in blood components such as plasma, but blood typically has extremely low prion concentrations and contains inhibitors of the most sensitive prion tests. One of the latter tests is quaking-induced conversion (QuIC), which can be as sensitive as in vivo bioassays, but much more rapid, higher throughput, and less expensive. Now we have integrated antibody 15B3-based immunoprecipitation with QuIC reactions to increase sensitivity and isolate prions from inhibitors such as those in plasma samples. Coupling of immunoprecipitation and an improved real-time QuIC reaction dramatically enhanced detection of variant Creutzfeldt-Jakob disease (vCJD) brain tissue diluted into human plasma. Dilutions of 1014-fold, containing ~2 attogram (ag) per ml of proteinase K-resistant prion protein, were readily detected, indicating ~10,000-fold greater sensitivity for vCJD brain than has previously been reported. We also discriminated between plasma and serum samples from scrapie-infected and uninfected hamsters, even in early preclinical stages. This combined assay, which we call “enhanced QuIC” (eQuIC), markedly improves prospects for routine detection of low levels of prions in tissues, fluids, or environmental samples. IMPORTANCE Transmissible spongiform encephalopathies (TSEs) are largely untreatable and are difficult to diagnose definitively prior to irreversible clinical decline or death. The transmissibility of TSEs within and between species highlights the need for practical tests for even the smallest amounts of infectivity. A few sufficiently sensitive in vitro methods have been reported, but most have major limitations that would preclude their use in routine diagnostic or screening applications. Our new assay improves the outlook for such critical applications. We focused initially on blood plasma because a practical blood test for prions would be especially valuable for TSE diagnostics and risk reduction. Variant Creutzfeldt-Jakob disease (vCJD) in particular has been transmitted between humans via blood transfusions. Enhanced real-time quaking-induced conversion (eRTQ) provides by far the most sensitive detection of vCJD to date. The 15B3 antibody binds prions of multiple species, suggesting that our assay may be useful for clinical and fundamental studies of a variety of TSEs of humans and animals.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Alessio Cardinale ◽  
Silvia Biocca

Prion diseases or transmissible spongiform encephalopathies (TSE) are a group of neurodegenerative and infectious disorders characterized by the conversion of a normal cellular protein PrPCinto a pathological abnormally folded form, termed PrPSc. There are neither available therapies nor diagnostic tools for an early identification of individuals affected by these diseases. New gene-based antibody strategies are emerging as valuable therapeutic tools. Among these, intrabodies are chimeric molecules composed by recombinant antibody fragments fused to intracellular trafficking sequences, aimed at inhibiting,in vivo, the function of specific therapeutic targets. The advantage of intrabodies is that they can be selected against a precise epitope of target proteins, including protein-protein interaction sites and cytotoxic conformers (i.e., oligomeric and fibrillar assemblies). Herein, we address and discussin vitroandin vivoapplications of intrabodies in prion diseases, focussing on their therapeutic potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Belén Marín ◽  
Alicia Otero ◽  
Séverine Lugan ◽  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
...  

AbstractPigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8–9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


2002 ◽  
Vol 9 (4) ◽  
pp. 245-252 ◽  
Author(s):  
France Mélot ◽  
Caroline Thielen ◽  
Thouraya Labiet ◽  
Sabine Eisher ◽  
Olivier Jolois ◽  
...  

The cellular prion protein (PrPc) is a glycolipid-anchored cell surface protein that usually exhibits three glycosylation states. Its post-translationally modified isoform, PrPsc, is involved in the pathogenesis of various transmissible spongiform encephalopathies (TSEs). In bovine species, BSE infectivity appears to be restricted to the central nervous system; few or no detectable infectivity is found in lymphoid tissues in contrast to scrapie or variant CJD. Since expression of PrPc is a prerequisite for prion replication, we have investigated PrPc expression by bovine immune cells. Lymphocytes from blood and five different lymph organs were isolated from the same animal to assess intra- and interindividual variability of PrPc expression, considering six individuals. As shown by flow cytometry, this expression is absent or weak on granulocytes but is measurable on monocytes, B and T cells from blood and lymph organs. The activation of the bovine cells produces an upregulation of PrPc. The results of our in vitro study of PrPc biosynthesis are consistent with previous studies in other species. Interestingly, western blotting experiments showed only one form of the protein, the diglycosylated band. We propose that the glycosylation state could explain the lack of infectivity of the bovine immune cells.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 469
Author(s):  
Hasier Eraña ◽  
Jorge M. Charco ◽  
Ezequiel González-Miranda ◽  
Sandra García-Martínez ◽  
Rafael López-Moreno ◽  
...  

Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.


1999 ◽  
Vol 63 (4) ◽  
pp. 844-861 ◽  
Author(s):  
Reed B. Wickner ◽  
Kimberly L. Taylor ◽  
Herman K. Edskes ◽  
Marie-Lise Maddelein ◽  
Hiromitsu Moriyama ◽  
...  

SUMMARY Genetic evidence showed two non-Mendelian genetic elements of Saccharomyces cerevisiae, called [URE3] and [PSI], to be prions of Ure2p and Sup35p, respectively. [URE3] makes cells derepressed for nitrogen catabolism, while [PSI] elevates the efficiency of weak suppressor tRNAs. The same approach led to identification of the non-Mendelian element [Het-s] of the filamentous fungus Podospora anserina, as a prion of the het-s protein. The prion form of the het-s protein is required for heterokaryon incompatibility, a normal fungal function, suggesting that other normal cellular functions may be controlled by prions. [URE3] and [PSI] involve a self-propagating aggregation of Ure2p and Sup35p, respectively. In vitro, Ure2p and Sup35p form amyloid, a filamentous protein structure, high in β-sheet with a characteristic green birefringent staining by the dye Congo Red. Amyloid deposits are a cardinal feature of Alzheimer’s disease, non-insulin-dependent diabetes mellitus, the transmissible spongiform encephalopathies, and many other diseases. The prion domain of Ure2p consists of Asn-rich residues 1 to 80, but two nonoverlapping fragments of the molecule can, when overproduced, induce the de nova appearance of [URE3]. The prion domain of Sup35 consists of residues 1 to 114, also rich in Asn and Gln residues. While runs of Asn and Gln are important for [URE3] and [PSI], no such structures are found in PrP or the Het-s protein. Either elevated or depressed levels of the chaperone Hsp104 interfere with propagation of [PSI]. Both [URE3] and [PSI] are cured by growth of cells in millimolar guanidine HCl. [URE3] is also cured by overexpression of fragments of Ure2p or fusion proteins including parts of Ure2p.


1998 ◽  
Vol 335 (2) ◽  
pp. 369-374 ◽  
Author(s):  
Mar PÉREZ ◽  
Francisco WANDOSELL ◽  
Camilo COLAÇO ◽  
Jesús AVILA

Although a number of features distinguish the disease isoform of the prion protein (PrPSc) from its normal cellular counterpart (PrPC) in the transmissible spongiform encephalopathies (TSEs), the neuropathogenesis of these diseases remains an enigma. The amyloid fibrils formed by fragments of human PrP have, however, been shown to be directly neurotoxic in vitro. We show here that sulphated polysaccharides (heparin, keratan and chondroitin) inhibit the neurotoxicity of these amyloid fibrils and this appears to be mediated via inhibition of the polymerization of the PrP peptide into fibrils. This provides a rationale for the therapeutic effects of sulphated polysaccharides and suggests a rapid in vitro functional screen for TSE therapeutics.


Sign in / Sign up

Export Citation Format

Share Document