scholarly journals Characterization of a Neuraminidase-Deficient Influenza A Virus as a Potential Gene Delivery Vector and a Live Vaccine

2004 ◽  
Vol 78 (6) ◽  
pp. 3083-3088 ◽  
Author(s):  
Kyoko Shinya ◽  
Yutaka Fujii ◽  
Hiroshi Ito ◽  
Toshihiro Ito ◽  
Yoshihiro Kawaoka

ABSTRACT We recently identified a packaging signal in the neuraminidase (NA) viral RNA (vRNA) segment of an influenza A virus, allowing us to produce a mutant virus [GFP(NA)-Flu] that lacks most of the NA open reading frame but contains instead the gene encoding green fluorescent protein (GFP). To exploit the expanding knowledge of vRNA packaging signals to establish influenza virus vectors for the expression of foreign genes, we studied the replicative properties of this virus in cell culture and mice. Compared to wild-type virus, GFP(NA)-Flu was highly attenuated in normal cultured cells but was able to grow to a titer of >106 PFU/ml in a mutant cell line expressing reduced levels of sialic acid on the cell surface. GFP expression from this virus was stable even after five passages in the latter cells. In intranasally infected mice, GFP was detected in the epithelial cells of nasal mucosa, bronchioles, and alveoli for up to 4 days postinfection. We attribute the attenuated growth of GFP(NA)-Flu to virion aggregation at the surface of bronchiolar epithelia. In studies to test the potential of this mutant as a live attenuated influenza vaccine, all mice vaccinated with ≥105 PFU of GFP(NA)-Flu survived when challenged with lethal doses of the parent virus. These results suggest that influenza virus could be a useful vector for expressing foreign genes and that a sialidase-deficient virus may offer an alternative to the live influenza vaccines recently approved for human use.

2007 ◽  
Vol 81 (18) ◽  
pp. 9727-9736 ◽  
Author(s):  
Glenn A. Marsh ◽  
Raheleh Hatami ◽  
Peter Palese

ABSTRACT A final step in the influenza virus replication cycle is the assembly of the viral structural proteins and the packaging of the eight segments of viral RNA (vRNA) into a fully infectious virion. The process by which the RNA genome is packaged efficiently remains poorly understood. In an approach to analyze how vRNA is packaged, we rescued a seven-segmented virus lacking the hemagglutinin (HA) vRNA (deltaHA virus). This virus could be passaged in cells constitutively expressing HA protein, but it was attenuated in comparison to wild-type A/WSN/33 virus. Supplementing the deltaHA virus with an artificial segment containing green fluorescent protein (GFP) or red fluorescent protein (RFP) with HA packaging regions (45 3′ and 80 5′ nucleotides) partially restored the growth of this virus to wild-type levels. The absence of the HA vRNA in the deltaHA virus resulted in a 40 to 60% reduction in the packaging of the PA, NP, NA, M, and NS vRNAs, as measured by quantitative PCR (qPCR), and the packaging of these vRNAs was partially restored in the presence of GFP/RFP packaging constructs. To further define nucleotides of the HA coding sequence which are important for vRNA packaging, synonymous mutations were introduced into the full-length HA cDNA of influenza A/WSN/33 and A/Puerto Rico/8/34 viruses, and mutant viruses were rescued. qPCR analysis of vRNAs packaged in these mutant viruses identified a key region of the open reading frame (nucleotides 1659 to 1671) that is critical for the efficient packaging of an influenza virus H1 HA segment.


2003 ◽  
Vol 77 (19) ◽  
pp. 10575-10583 ◽  
Author(s):  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
Takeshi Noda ◽  
Yutaka Fujii ◽  
Yoshihiro Kawaoka

ABSTRACT At the final step in viral replication, the viral genome must be incorporated into progeny virions, yet the genomic regions required for this process are largely unknown in RNA viruses, including influenza virus. Recently, it was reported that both ends of the neuraminidase (NA) coding region are critically important for incorporation of this vRNA segment into influenza virions (Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Proc. Natl. Acad. Sci. USA 100:2002-2007, 2003). To determine the signals in the hemagglutinin (HA) vRNA required for its virion incorporation, we made a series of deletion constructs of this segment. Subsequent analysis showed that 9 nucleotides at the 3′ end of the coding region and 80 nucleotides at the 5′ end are sufficient for efficient virion incorporation of the HA vRNA. The utility of this information for stable expression of foreign genes in influenza viruses was assessed by generating a virus whose HA and NA vRNA coding regions were replaced with those of vesicular stomatitis virus glycoprotein (VSVG) and green fluorescent protein (GFP), respectively, while retaining virion incorporation signals for these segments. Despite the lack of HA and NA proteins, the resultant virus, which possessed only VSVG on the virion surface, was viable and produced GFP-expressing plaques in cells even after repeated passages, demonstrating that two foreign genes can be incorporated and maintained stably in influenza A virus. These findings could serve as a model for the construction of influenza A viruses designed to express and/or deliver foreign genes.


Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Rosario Bullido ◽  
Paulino Gómez-Puertas ◽  
Carmen Albo ◽  
Agustín Portela

A systematic analysis was carried out to identify the amino acid signals that regulate the nucleo-cytoplasmic transport of the influenza A virus nucleoprotein (NP). The analysis involved determining the intracellular localization of eight deleted recombinant NP proteins and 14 chimeric proteins containing the green fluorescent protein fused to different NP fragments. In addition, the subcellular distribution of NP derivatives that contained specific substitutions at serine-3, which is the major phosphorylation site of the A/Victoria/3/75 NP, were analysed. From the results obtained, it is concluded that the NP contains three signals involved in nuclear accumulation and two regions that cause cytoplasmic accumulation of the fusion proteins. One of the karyophilic signals was located at the N terminus of the protein, and the data obtained suggest that the functionality of this signal can be modified by phosphorylation at serine-3. These findings are discussed in the context of the transport of influenza virus ribonucleoprotein complexes into and out of the nucleus.


2016 ◽  
Vol 90 (7) ◽  
pp. 3684-3693 ◽  
Author(s):  
Léa Meyer ◽  
Alix Sausset ◽  
Laura Sedano ◽  
Bruno Da Costa ◽  
Ronan Le Goffic ◽  
...  

ABSTRACTThe influenza virus RNA-dependent RNA polymerase, which is composed of three subunits, PB1, PB2, and PA, catalyzes genome replication and transcription within the cell nucleus. The PA linker (residues 197 to 256) can be altered by nucleotide substitutions to engineer temperature-sensitive (ts), attenuated mutants that display a defect in the transport of the PA–PB1 complex to the nucleus at a restrictive temperature. In this study, we investigated the ability of the PA linker to tolerate deletion mutations for furtherin vitroandin vivocharacterization. Four viable mutants with single-codon deletions were generated; all of them exhibited atsphenotype that was associated with the reduced efficiency of replication/transcription of a pseudoviral reporter RNA in a minireplicon assay. Using fluorescently tagged PB1, we observed that the deletion mutants did not efficiently recruit PB1 to reach the nucleus at a restrictive temperature (39.5°C). Mouse infections showed that the four mutants were attenuated and induced antibodies that were able to protect mice from challenge with a lethal homologous wild-type virus. Serialin vitropassages of two deletion mutants at 39.5°C and 37°C did not allow the restoration of a wild-type phenotype among virus progeny. Thus, our results identify codons that can be deleted in the PA gene to engineer genetically stabletsmutants that could be used to design novel attenuated vaccines.IMPORTANCEIn order to generate genetically stable live influenza A virus vaccines, we constructed viruses with single-codon deletions in a discrete domain of the RNA polymerase PA gene. The four rescued viruses exhibited a temperature-sensitive phenotype that we found was associated with a defect in the transport of the PA–PB1 dimer to the nucleus, where viral replication occurs. Thesetsdeletion mutants were shown to be attenuated and to be able to produce antibodies in mice and to protect them from a lethal challenge. Assays to select revertants that were able to grow efficiently at a restrictive temperature failed, showing that these deletion mutants are genetically more stable than conventional substitution mutants. These results are of interest for the design of genetically stable live influenza virus vaccines.


2009 ◽  
Vol 84 (2) ◽  
pp. 940-952 ◽  
Author(s):  
S. Munier ◽  
T. Larcher ◽  
F. Cormier-Aline ◽  
D. Soubieux ◽  
B. Su ◽  
...  

ABSTRACT A deletion of about 20 amino acids in the stalk of the neuraminidase (NA) is frequently detected upon transmission of influenza A viruses from waterfowl to domestic poultry. Using reverse genetics, a recombinant virus derived from a wild duck influenza virus isolate, A/Mallard/Marquenterre/Z237/83 (MZ), and an NA stalk deletion variant (MZ-delNA) were produced. Compared to the wild type, the MZ-delNA virus showed a moderate growth advantage on avian cultured cells. In 4-week-old chickens inoculated intratracheally with the MZ-delNA virus, viral replication in the lungs, liver, and kidneys was enhanced and interstitial pneumonia lesions were more severe than with the wild-type virus. The MZ-delNA-inoculated chickens showed significantly increased levels of mRNAs encoding interleukin-6 (IL-6), transforming growth factor-β4 (TGF-β4), and CCL5 in the lungs and a higher frequency of apoptotic cells in the liver than did their MZ-inoculated counterparts. Molecular mechanisms possibly underlying the growth advantage of the MZ-delNA virus were explored. The measured enzymatic activities toward a small substrate were similar for the wild-type and deleted NA, but the MZ-delNA virus eluted from chicken erythrocytes at reduced rates. Pseudoviral particles expressing the MZ hemagglutinin in combination with the MZ-NA or MZ-delNA protein were produced from avian cultured cells with similar efficiencies, suggesting that the deletion in the NA stalk does not enhance the release of progeny virions and probably affects an earlier step of the viral cycle. Overall, our data indicate that a shortened NA stalk is a strong determinant of adaptation and virulence of waterfowl influenza viruses in chickens.


2005 ◽  
Vol 79 (16) ◽  
pp. 10672-10677 ◽  
Author(s):  
Christian Kittel ◽  
Boris Ferko ◽  
Martina Kurz ◽  
Regina Voglauer ◽  
Sabine Sereinig ◽  
...  

ABSTRACT Engineering of the influenza A virus NS1 protein became an attractive approach to the development of influenza vaccine vectors since it can tolerate large inserts of foreign proteins. However, influenza virus vectors expressing long foreign sequences from the NS1 open reading frame (ORF) are usually replication deficient in animals due to the abrogation of their NS1 protein function. In this study, we describe a bicistronic expression strategy based on the insertion of an overlapping UAAUG stop-start codon cassette into the NS gene, allowing the reinitiation of translation of a foreign sequence. Although the expression level of green fluorescent protein (GFP) from the newly created reading frame was significantly lower than that obtained previously from an influenza virus vector expressing GFP from the NS1 ORF, the bicistronic vector appeared to be replication competent in mice and showed outstanding genetic stability. All viral isolates derived from mouse lungs at 10 days postinfection were still capable of expressing GFP in infected cells. Utilizing this bicistronic approach, we constructed another recombinant influenza virus, allowing the secretion of biologically active human interleukin-2 (IL-2). Although this virus also replicated to high titers in mouse lungs, it did not display any mortality rate in infected animals, in contrast to control viruses. Moreover, the IL-2-expressing virus showed an enhanced CD8+ response to viral antigens in mice after a single intranasal immunization. These results indicate that influenza viruses could be engineered for the expression of biologically active molecules such as cytokines for immune modulation purposes.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Kristina L. Prachanronarong ◽  
Aneth S. Canale ◽  
Ping Liu ◽  
Mohan Somasundaran ◽  
Shurong Hou ◽  
...  

ABSTRACTInfluenza A virus (IAV), a major cause of human morbidity and mortality, continuously evolves in response to selective pressures. Stem-directed, broadly neutralizing antibodies (sBnAbs) targeting the influenza virus hemagglutinin (HA) are a promising therapeutic strategy, but neutralization escape mutants can develop. We used an integrated approach combining viral passaging, deep sequencing, and protein structural analyses to define escape mutations and mechanisms of neutralization escapein vitrofor the F10 sBnAb. IAV was propagated with escalating concentrations of F10 over serial passages in cultured cells to select for escape mutations. Viral sequence analysis revealed three mutations in HA and one in neuraminidase (NA). Introduction of these specific mutations into IAV through reverse genetics confirmed their roles in resistance to F10. Structural analyses revealed that the selected HA mutations (S123G, N460S, and N203V) are away from the F10 epitope but may indirectly impact influenza virus receptor binding, endosomal fusion, or budding. The NA mutation E329K, which was previously identified to be associated with antibody escape, affects the active site of NA, highlighting the importance of the balance between HA and NA function for viral survival. Thus, whole-genome population sequencing enables the identification of viral resistance mutations responding to antibody-induced selective pressure.IMPORTANCEInfluenza A virus is a public health threat for which currently available vaccines are not always effective. Broadly neutralizing antibodies that bind to the highly conserved stem region of the influenza virus hemagglutinin (HA) can neutralize many influenza virus strains. To understand how influenza virus can become resistant or escape such antibodies, we propagated influenza A virusin vitrowith escalating concentrations of antibody and analyzed viral populations by whole-genome sequencing. We identified HA mutations near and distal to the antibody binding epitope that conferred resistance to antibody neutralization. Additionally, we identified a neuraminidase (NA) mutation that allowed the virus to grow in the presence of high concentrations of the antibody. Virus carrying dual mutations in HA and NA also grew under high antibody concentrations. We show that NA mutations mediate the escape of neutralization by antibodies against HA, highlighting the importance of a balance between HA and NA for optimal virus function.


2015 ◽  
Vol 90 (1) ◽  
pp. 444-456 ◽  
Author(s):  
Seiya Yamayoshi ◽  
Mariko Watanabe ◽  
Hideo Goto ◽  
Yoshihiro Kawaoka

ABSTRACTOver the past 2 decades, several novel influenza virus proteins have been identified that modulate viral infectionsin vitroand/orin vivo. The PB2 segment, which is one of the longest influenza A virus segments, is known to encode only one viral protein, PB2. In the present study, we used reverse transcription-PCR (RT-PCR) targeting viral mRNAs transcribed from the PB2 segment to look for novel viral proteins encoded by spliced mRNAs. We identified a new viral protein, PB2-S1, encoded by a novel spliced mRNA in which the region corresponding to nucleotides 1513 to 1894 of the PB2 mRNA is deleted. PB2-S1 was detected in virus-infected cells and in cells transfected with a protein expression plasmid encoding PB2. PB2-S1 localized to mitochondria, inhibited the RIG-I-dependent interferon signaling pathway, and interfered with viral polymerase activity (dependent on its PB1-binding capability). The nucleotide sequences around the splicing donor and acceptor sites for PB2-S1 were highly conserved among pre-2009 human H1N1 viruses but not among human H1N1pdm and H3N2 viruses. PB2-S1-deficient viruses, however, showed growth kinetics in MDCK cells and virulence in mice similar to those of wild-type virus. The biological significance of PB2-S1 to the replication and pathogenicity of seasonal H1N1 influenza A viruses warrants further investigation.IMPORTANCETranscriptome analysis of cells infected with influenza A virus has improved our understanding of the host response to viral infection, because such analysis yields considerable information about bothin vitroandin vivoviral infections. However, little attention has been paid to transcriptomes derived from the viral genome. Here we focused on the splicing of mRNA expressed from the PB2 segment and identified a spliced viral mRNA encoding a novel viral protein. This result suggests that other, as yet unidentified viral proteins encoded by spliced mRNAs could be expressed in virus-infected cells. A viral transcriptome including the viral spliceosome should be evaluated to gain new insights into influenza virus infection.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4387
Author(s):  
Eun Bin Kwon ◽  
Hye Jin Yang ◽  
Jang-Gi Choi ◽  
Wei Li

To identify new potential anti-influenza compounds, we isolated six flavonoids, 2′-hydroxyl yokovanol (1), 2′-hydroxyl neophellamuretin (2), yokovanol (3), swertisin (4), spinosin (5), and 7-methyl-apigenin-6-C-β-glucopyranosyl 2″-O-β-d-xylopyranoside (6) from MeOH extractions of Ohwia caudata. We screened these compounds for antiviral activity using green fluorescent protein (GFP)-expressing H1N1 (A/PR/8/34) influenza A-infected RAW 264.7 cells. Compounds 1 and 3 exhibited significant inhibitory effects against influenza A viral infection in co-treatment conditions. In addition, compounds 1 and 3 reduced viral protein levels, including M1, M2, HA, and neuraminidase (NA), and suppressed neuraminidase (NA) activity in RAW 264.7 cells. These findings demonstrated that 2′-hydroxyl yokovanol and yokovanol, isolated from O. caudate, inhibit influenza A virus by suppressing NA activity. The moderate inhibitory activities of these flavonoids against influenza A virus suggest that they may be developed as novel anti-influenza drugs in the future.


Sign in / Sign up

Export Citation Format

Share Document