scholarly journals CRISPR Screen Reveals that EHEC’s T3SS and Shiga Toxin Rely on Shared Host Factors for Infection

mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Alline R. Pacheco ◽  
Jacob E. Lazarus ◽  
Brandon Sit ◽  
Stefanie Schmieder ◽  
Wayne I. Lencer ◽  
...  

ABSTRACTEnterohemorrhagicEscherichia coli(EHEC) has two critical virulence factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for the pathogen to colonize the intestine and cause diarrheal disease. Here, we carried out a genome-wide CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats with Cas9) loss-of-function screen to identify host loci that facilitate EHEC infection of intestinal epithelial cells. Many of the guide RNAs identified targeted loci known to be associated with sphingolipid biosynthesis, particularly for production of globotriaosylceramide (Gb3), the Stx receptor. Two loci (TM9SF2 and LAPTM4A) with largely unknown functions were also targeted. Mutations in these loci not only rescued cells from Stx-mediated cell death, but also prevented cytotoxicity associated with the EHEC T3SS. These mutations interfered with early events associated with T3SS and Stx pathogenicity, markedly reducing entry of T3SS effectors into host cells and binding of Stx. The convergence of Stx and T3SS onto overlapping host targets provides guidance for design of new host-directed therapeutic agents to counter EHEC infection.IMPORTANCEEnterohemorrhagicEscherichia coli(EHEC) has two critical virulence factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for colonizing the intestine and causing diarrheal disease. We screened a genome-wide collection of CRISPR mutants derived from intestinal epithelial cells and identified mutants with enhanced survival following EHEC infection. Many had mutations that disrupted synthesis of a subset of lipids (sphingolipids) that includes the Stx receptor globotriaosylceramide (Gb3) and hence protect against Stx intoxication. Unexpectedly, we found that sphingolipids also mediate early events associated with T3SS pathogenicity. Since antibiotics are contraindicated for the treatment of EHEC, therapeutics targeting sphingolipid biosynthesis are a promising alternative, as they could provide protection against both of the pathogen’s key virulence factors.

2018 ◽  
Author(s):  
Alline R. Pacheco ◽  
Jacob E. Lazarus ◽  
Brandon Sit ◽  
Stefanie Schmieder ◽  
Wayne I. Lencer ◽  
...  

AbstractEnterohemorrhagicEscherichia coli(EHEC) has two critical virulence factors – a type III secretion system (T3SS) and Shiga toxins (Stx) – that are required for the pathogen to colonize the intestine and cause diarrheal disease. Here, we carried out a genome-wide CRISPR/Cas9 loss-of-function screen to identify host loci that facilitate EHEC infection of intestinal epithelial cells. Many of the guide RNAs identified targeted loci known to be associated with sphingolipid biosynthesis, particularly for production of globotriaosylceramide (Gb3), the Stx receptor. Two loci (TM9SF2 and LAPTM4A) with largely unknown functions were also targeted. Mutations in these loci not only rescued cells from Stx-mediated cell death, but also prevented cytotoxicity associated with the EHEC T3SS. These mutations interfered with early events associated with T3SS and Stx pathogenicity, markedly reducing entry of T3SS effectors into host cells and binding of Stx. The convergence of Stx and T3SS onto overlapping host targets provides guidance for design of new host-directed therapeutic agents to counter EHEC infection.ImportanceEnterohemorrhagicEscherichia coli(EHEC) has two critical virulence factors – a type III secretion system (T3SS) and Shiga toxins (Stx) – that are required for colonizing the intestine and causing diarrheal disease. We screened a genome-wide collection of CRISPR mutants derived from intestinal epithelial cells and identified mutants with enhanced survival following EHEC infection. Many had mutations that disrupted synthesis of a subset of lipids (sphingolipids) that includes the Stx receptor globotriaosylceramide (Gb3), and hence protect against Stx intoxication. Unexpectedly, we found that sphingolipids also mediate early events associated with T3SS pathogenicity. Since antibiotics are contraindicated for the treatment of EHEC, therapeutics targeting sphingolipid biosynthesis are a promising alternative, as they could provide protection against both of the pathogen’s key virulence factors.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Matthias Dierick ◽  
Hans Van der Weken ◽  
Joanna Rybarczyk ◽  
Daisy Vanrompay ◽  
Bert Devriendt ◽  
...  

ABSTRACT Postweaning diarrhea (PWD) is an economically important, multifactorial disease affecting pigs within the first 2 weeks after weaning. The most common agent associated with PWD is enterotoxigenic Escherichia coli (ETEC). Currently, antibiotics are used to control PWD, and this has most likely contributed to an increased prevalence of antibiotic-resistant strains. This puts pressure on veterinarians and farmers to decrease or even abandon the use of antibiotics, but these measures need to be supported by alternative strategies for controlling these infections. Naturally derived molecules, such as lactoferrin, could be potential candidates due to their antibacterial or immune-modulating activities. Here, we analyzed the ability of bovine lactoferrin (bLF), porcine lactoferrin (pLF), and ovotransferrin (ovoTF) to inhibit ETEC growth, degrade ETEC virulence factors, and inhibit adherence of these pathogens to porcine intestinal epithelial cells. Our results revealed that bLF and pLF, but not ovoTF, inhibit the growth of ETEC. Furthermore, bLF and pLF can degrade several virulence factors produced by ETEC strains, more specifically F4 fimbriae, F18 fimbriae, and flagellin. On the other hand, ovoTF degrades F18 fimbriae and flagellin but not F4 fimbriae. An in vitro adhesion assay showed that bLF, ovoTF, and pLF can decrease the number of bacteria adherent to epithelial cells. Our findings demonstrate that lactoferrin can directly affect porcine ETEC strains, which could allow lactoferrin to serve as an alternative to antimicrobials for the prevention of ETEC infections in piglets. IMPORTANCE Currently, postweaning F4+ and F18+ Escherichia coli infections in piglets are controlled by the use of antibiotics and zinc oxide, but the use of these antimicrobial agents most likely contributes to an increase in antibiotic resistance. Our work demonstrates that bovine and porcine lactoferrin can inhibit the growth of porcine enterotoxigenic E. coli strains. In addition, we also show that lactoferrin can reduce the adherence of these strains to small intestinal epithelial cells, even at a concentration that does not inhibit bacterial growth. This research could allow us to develop lactoferrin as an alternative strategy to prevent enterotoxigenic E. coli (ETEC) infections in piglets.


2012 ◽  
Vol 80 (12) ◽  
pp. 4089-4098 ◽  
Author(s):  
Abdi Elmi ◽  
Eleanor Watson ◽  
Pamela Sandu ◽  
Ozan Gundogdu ◽  
Dominic C. Mills ◽  
...  

ABSTRACTCampylobacter jejuniis the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However,C. jejunilacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery ofC. jejuniproteins into host cells. Proteomic analysis ofC. jejuni11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT).C. jejuniOMVs contained 16N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells.C. jejuniOMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions withC. jejuniOMVs. OMVs isolated from aC. jejuni11168HcdtAmutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Binjie Chen ◽  
Xianchen Meng ◽  
Jie Ni ◽  
Mengping He ◽  
Yanfei Chen ◽  
...  

AbstractSmall non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.


2006 ◽  
Vol 74 (1) ◽  
pp. 769-772 ◽  
Author(s):  
Scarlett Goon ◽  
Cheryl P. Ewing ◽  
Maria Lorenzo ◽  
Dawn Pattarini ◽  
Gary Majam ◽  
...  

ABSTRACT A Campylobacter jejuni 81-176 mutant in Cj0977 was fully motile but reduced >3 logs compared to the parent in invasion of intestinal epithelial cells in vitro. The mutant was also attenuated in a ferret diarrheal disease model. Expression of Cj0977 protein was dependent on a minimal flagella structure.


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Supriya D. Mehta ◽  
Drew R. Nannini ◽  
Fredrick Otieno ◽  
Stefan J. Green ◽  
Walter Agingu ◽  
...  

ABSTRACT Bacterial vaginosis (BV) affects 20% of women worldwide and is associated with adverse reproductive health outcomes and increased risk for HIV. Typically, BV represents a shift in the vaginal microbiome from one that is dominated by Lactobacillus to one that is diverse. Persistent racial differences in BV and diverse vaginal microbiome composition overlap with racial disparities in risks for HIV and sexually transmitted infection, especially among women of African descent. Risk factors for BV and nonoptimal vaginal microbiome include sexual practices, yet racial differences persist when adjusted for behavioral factors, suggesting a host genetic component. Here, we perform a genome-wide association study on vaginal microbiome traits in Kenyan women. Linear regression and logistic regression were performed, adjusting for age and principal components of genetic ancestry, to evaluate the association between Lactobacillus crispatus, Lactobacillus iners, Gardnerella vaginalis, Shannon diversity index, and community state type (CST) with host genetic single nucleotide polymorphisms (SNPs). We identified novel genomic loci associated with the vaginal microbiome traits, though no SNP reached genome-wide significance. During pathway enrichment analysis, Toll-like receptors (TLRs), cytokine production, and other components of innate immune response were associated with L. crispatus, L. iners, and CST. Multiple previously reported genomic loci were replicated, including IL-8 (Shannon, CST), TIRAP (L. iners, Shannon), TLR2 (Shannon, CST), MBL2 (L. iners, G. vaginalis, CST), and MYD88 (L. iners, Shannon). These genetic associations suggest a role for the innate immune system and cell signaling in vaginal microbiome composition and susceptibility to nonoptimal vaginal microbiome. IMPORTANCE Globally, bacterial vaginosis (BV) is a common condition in women. BV is associated with poorer reproductive health outcomes and HIV risk. Typically, BV represents a shift in the vaginal microbiome from one that is dominated by Lactobacillus to one that is diverse. Despite many women having similar exposures, the prevalence of BV and nonoptimal vaginal microbiome is increased for women of African descent, suggesting a possible role for host genetics. We conducted a genome-wide association study of important vaginal microbiome traits in Kenyan women. We identified novel genetic loci and biological pathways related to mucosal immunity, cell signaling, and infection that were associated with vaginal microbiome traits; we replicated previously reported loci associated with mucosal immune response. These results provide insight into potential host genetic influences on vaginal microbiome composition and can guide larger longitudinal studies, with genetic and functional comparison across microbiome sites within individuals and across populations.


2019 ◽  
Vol 317 (6) ◽  
pp. C1205-C1212 ◽  
Author(s):  
Anoop Kumar ◽  
Dulari Jayawardena ◽  
Arivarasu N. Anbazhagan ◽  
Ishita Chatterjee ◽  
Shubha Priyamvada ◽  
...  

The protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a diarrheal disease worldwide. Infection in immunocompetent hosts typically results in acute, self-limiting, or recurrent diarrhea. However, in immunocompromised individuals infection can cause fulminant diarrhea, extraintestinal manifestations, and death. To date, the mechanisms underlying CP-induced diarrheal pathogenesis are poorly understood. Diarrheal diseases most commonly involve increased secretion and/or decreased absorption of fluid and electrolytes. We and others have previously shown impaired chloride absorption in infectious diarrhea due to dysregulation of SLC26A3 [downregulated in adenoma (DRA)], the human intestinal apical membrane Cl−/[Formula: see text] exchanger protein. However, there are no studies on the effects of CP infection on DRA activity. Therefore, we examined the expression and function of DRA in intestinal epithelial cells in response to CP infection in vitro and in vivo. CP infection (0.5 × 106 oocysts/well in 24-well plates, 24 h) of Caco-2 cell monolayers significantly decreased Cl−/[Formula: see text] exchange activity (measured as DIDS-sensitive 125I uptake) as well as DRA mRNA and protein levels. Substantial downregulation of DRA mRNA and protein was also observed following CP infection ex vivo in mouse enteroid-derived monolayers and in vivo in the ileal and jejunal mucosa of C57BL/6 mice for 24 h. However, at 48 h after infection in vivo, the effects on DRA mRNA and protein were attenuated and at 5 days after infection DRA returned to normal levels. Our results suggest that impaired chloride absorption due to downregulation of DRA could be one of the contributing factors to CP-induced acute, self-limiting diarrhea in immunocompetent hosts.


2020 ◽  
Vol 89 (1) ◽  
pp. e00654-20
Author(s):  
Javier I. Sanchez-Villamil ◽  
Daniel Tapia ◽  
Grace I. Borlee ◽  
Bradley R. Borlee ◽  
David H. Walker ◽  
...  

ABSTRACTBurkholderia pseudomallei is a Gram-negative bacterium and the causative agent of melioidosis. Despite advances in our understanding of the disease, B. pseudomallei poses a significant health risk, especially in regions of endemicity, where treatment requires prolonged antibiotic therapy. Even though the respiratory and percutaneous routes are well documented and considered the main ways to acquire the pathogen, the gastrointestinal tract is believed to be an underreported and underrecognized route of infection. In the present study, we describe the development of in vitro and in vivo models to study B. pseudomallei gastrointestinal infection. Further, we report that the type 6 secretion system (T6SS) and type 1 fimbriae are important virulence factors required for gastrointestinal infection. Using a human intestinal epithelial cell line and mouse primary intestinal epithelial cells (IECs), we demonstrated that B. pseudomallei adheres, invades, and forms multinucleated giant cells, ultimately leading to cell toxicity. We demonstrated that mannose-sensitive type 1 fimbria is involved in the initial adherence of B. pseudomallei to IECs, although the impact on full virulence was limited. Finally, we also showed that B. pseudomallei requires a functional T6SS for full virulence, bacterial dissemination, and lethality in mice infected by the intragastric route. Overall, we showed that B. pseudomallei is an enteric pathogen and that type 1 fimbria is important for B. pseudomallei intestinal adherence, and we identify a new role for T6SS as a key virulence factor in gastrointestinal infection. These studies highlight the importance of gastrointestinal melioidosis as an understudied route of infection and open a new avenue for the pathogenesis of B. pseudomallei.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e02250-20
Author(s):  
Kathrin Stelzner ◽  
Ann-Cathrin Winkler ◽  
Chunguang Liang ◽  
Aziza Boyny ◽  
Carsten P. Ade ◽  
...  

ABSTRACTThe opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca2+ overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca2+ homeostasis.


2019 ◽  
Vol 93 (18) ◽  
Author(s):  
Mia Madel Alfajaro ◽  
Ji-Yun Kim ◽  
Laure Barbé ◽  
Eun-Hyo Cho ◽  
Jun-Gyu Park ◽  
...  

ABSTRACTGroup A rotaviruses, an important cause of severe diarrhea in children and young animals, initiate infection via interactions of the VP8* domain of the VP4 spike protein with cell surface sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is also used in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for the VP8* domain of WC3 and its reassortant strains have not yet been identified. In the present study, HBGA- and saliva-binding assays showed that both G6P[5] WC3 and mono-reassortant G4P[5] strains recognized the αGal HBGA. The infectivity of both P[5]-bearing strains was significantly reduced in αGal-free MA-104 cells by pretreatment with a broadly specific neuraminidase or by coincubation with the α2,6-linked SA-specificSambucus nigralectin, but not by the α2,3-linked specific sialidase or byMaackia amurensislectin. Free NeuAc and the αGal trisaccharide also prevented the infectivity of both strains. This indicated that both P[5]-bearing strains utilize α2,6-linked SA as a ligand on MA104 cells. However, the two strains replicated in differentiated bovine small intestinal enteroids and in their human counterparts that lack α2,6-linked SA or αGal HBGA, suggesting that additional or alternative receptors such as integrins, hsp70, and tight-junction proteins bound directly to the VP5* domain can be used by the P[5]-bearing strains to initiate the infection of human cells. In addition, these data also suggested that P[5]-bearing strains have potential for cross-species transmission.IMPORTANCEGroup A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human.


Sign in / Sign up

Export Citation Format

Share Document