Rationally designed curcumin based ruthenium(ii) antimicrobials effective against drug-resistant Staphylococcus aureus

2019 ◽  
Vol 48 (31) ◽  
pp. 11822-11828 ◽  
Author(s):  
Payal Srivastava ◽  
Manjulika Shukla ◽  
Grace Kaul ◽  
Sidharth Chopra ◽  
Ashis K. Patra

Two curcumin conjugated ruthenium(ii) polypyridyl complexes, [Ru(NN)2(cur)](PF6) (1, 2), were systematically exploited for their antimicrobial activity in vitro and in vivo and potential selectivity against multidrug resistant S. aureus strains.

2007 ◽  
Vol 51 (9) ◽  
pp. 3416-3419 ◽  
Author(s):  
Mick M. Welling ◽  
Carlo P. J. M. Brouwer ◽  
Wim van ′t Hof ◽  
Enno C. I. Veerman ◽  
Arie V. Nieuw Amerongen

ABSTRACT Homodimerization of histatin-derived peptides generally led to improved bactericidal activity against Staphylococcus aureus in vitro. In vivo, monomers and dimers were equally active in killing bacteria in mice with a soft tissue infection. Altogether, these peptides are promising compounds for the development of novel therapeutics against infections with drug-resistant bacteria.


Biofouling ◽  
2010 ◽  
Vol 26 (6) ◽  
pp. 711-717 ◽  
Author(s):  
Dhamodharan Bakkiyaraj ◽  
Shunmugiah Thevar Karutha Pandian

2020 ◽  
Vol 151 ◽  
pp. 15550-15558
Author(s):  
Amégninou Agban ◽  
Yao Hoekou ◽  
Passimna Pissang ◽  
Tchadjobo Tchacondo ◽  
Komlan Batawila

Objectif : L’objectif de ce travail était d’évaluer in vitro l’activité antimicrobienne des extraits de feuilles et tige de Jatropha multifida sur la croissance de Candida albicans, Escherichia coli et Staphylococcus aureus, puis d’évaluer in vivo la toxicité de cette plante. Méthodologie et résultats : Les méthodes de diffusion en milieu gélosé et de microdilution en milieu liquide ont été utilisées pour évaluer l’effet antimicrobien. Une étude en subaigüe était réalisée afin d’explorer les effets toxiques de l’extrait aqueux des feuilles. Les résultats des tests antimicrobiens montrent une activité des extraits de feuilles et tige de J. multifida sur la croissance des souches utilisées avec des diamètres de zones d’inhibition allant de 8 à 25 mm et des concentrations minimales inhibitrices (CMI) variant de 0,039 mg/mL à 1,25 mg/mL à l’exception des souches de E. coli qui sont résistantes aux extraits de la tige. L’administration en subaigüe de l’extrait aqueux des feuilles de J. multifida à la dose de 600 mg/kg entraîne une perte significative de poids chez les souris. Conclusion et applications des résultats : Les extraits aqueux, éthanolique et hydroéthanolique des feuilles et tige de J. multifida possèdent d’activité antimicrobienne et pourraient être utilisés dans le traitement des Candidoses à C. albicans et des infections à S. aureus. Mais l’essai de toxicité subaigüe montre que l’extrait aqueux de la plante serait toxique. Des études toxicologiques approfondies restent donc nécessaires sur ces extraits afin de mieux élucider leur inocuité. Mots-clés : Jatropha multifida, extraits de feuilles et de tige, activités antifongique et antibactérienne, toxicité. Agban et al., J. Appl. Biosci. 2020 Evaluation du potentiel antimicrobien et de la toxicité des extraits de Jatropha multifida Linn, (Euphorbiaceae) 15551 Evaluation of antimicrobial potential and toxicity of Jatropha multifida Linn, (Euphorbiaceae) extracts ABSTRACT Objective: The objective of this study was to evaluate in vitro the antimicrobial activity of leaves and stem of Jatropha multifida extracts against Candida albicans, Escherichia coli and Staphylococcus aureus, and then to evaluate in vivo the toxicity of this plant. Methodology and Results: The agar well-diffusion and the NCCLS broth microdilution methods were used to assess the antimicrobial effect. A subacute study was carried out to explore the toxic effects of the aqueous extract of the leaves. The results of the antimicrobial tests show an activity of the extracts of leaves and stems of J. multifida on the growth of the strains used with diameters of inhibitory zones ranging from 8 to 25 mm and minimum inhibitory concentrations (MIC) varying from 0.039 mg/mL to 1.25 mg/mL exception E. coli strains which are resistant to extracts from the stem. Subacute administration of the aqueous extract of the leaves of J. multifida at a dose of 600 mg/kg leads to a significant loss of weight in the mice. Conclusion and application of findings : The aqueous, ethanolic and hydroethanolic extracts of the leaves and stem of J. multifida have antimicrobial activity and could be used in the treatment of Candidiasis and bacterial infections due respectively to C. albicans and S. aureus. But the subacute toxicity test shows that the aqueous extract of the plant would be toxic. Extensive toxicological studies therefore remain necessary on these extracts in order to better elucidate their safety. Keywords: Jatropha multifida extracts of leaves and stem, antifungal and antibacterial activities, toxicity


2006 ◽  
Vol 50 (2) ◽  
pp. 806-809 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Semih Esin ◽  
Walter Florio ◽  
Daria Bottai ◽  
...  

ABSTRACT The antimicrobial activity of human β-defensin 3 (hBD-3) against multidrug-resistant clinical isolates of Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii was evaluated. A fast bactericidal effect (within 20 min) against all bacterial strains tested was observed. The presence of 20% human serum abolished the bactericidal activity of hBD-3 against gram-negative strains and reduced the activity of the peptide against gram-positive strains.


2020 ◽  
Vol 8 (2) ◽  
pp. 739-745 ◽  
Author(s):  
Weinan Jiang ◽  
Ximian Xiao ◽  
Yueming Wu ◽  
Weiwei Zhang ◽  
Zihao Cong ◽  
...  

Host defense peptide mimicking peptide polymer displayed potent in vitro and in vivo antimicrobial activity against clinically isolated multidrug resistant Pseudomonas aeruginosa.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Anna M. Sobieraj ◽  
Markus Huemer ◽  
Léa V. Zinsli ◽  
Susanne Meile ◽  
Anja P. Keller ◽  
...  

ABSTRACT Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections. IMPORTANCE Life-threatening infections with Staphylococcus aureus are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against S. aureus-induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells.


2012 ◽  
Vol 436 (1-2) ◽  
pp. 659-676 ◽  
Author(s):  
Subhankari Prasad Chakraborty ◽  
Sumanta Kumar Sahu ◽  
Panchanan Pramanik ◽  
Somenath Roy

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amy B. Howell ◽  
Doris H. D'Souza

Pomegranates have been known for hundreds of years for their multiple health benefits, including antimicrobial activity. The recent surge in multidrug-resistant bacteria and the possibility of widespread global virus pandemics necessitate the need for additional preventative and therapeutic options to conventional drugs. Research indicates that pomegranates and their extracts may serve as natural alternatives due to their potency against a wide range of bacterial and viral pathogens. Nearly every part of the pomegranate plant has been tested for antimicrobial activities, including the fruit juice, peel, arils, flowers, and bark. Many studies have utilized pomegranate peel with success. There are various phytochemical compounds in pomegranate that have demonstrated antimicrobial activity, but most of the studies have found that ellagic acid and larger hydrolyzable tannins, such as punicalagin, have the highest activities. In some cases the combination of the pomegranate constituents offers the most benefit. The positive clinical results on pomegranate and suppression of oral bacteria are intriguing and worthy of further study. Much of the evidence for pomegranates’ antibacterial and antiviral activities against foodborne pathogens and other infectious disease organisms comes fromin vitrocell-based assays, necessitating further confirmation ofin vivoefficacy through human clinical trials.


2012 ◽  
Vol 56 (7) ◽  
pp. 3475-3480 ◽  
Author(s):  
Sovitj Pou ◽  
Rolf W. Winter ◽  
Aaron Nilsen ◽  
Jane Xu Kelly ◽  
Yuexin Li ◽  
...  

ABSTRACTSontochin was the original chloroquine replacement drug, arising from research by Hans Andersag 2 years after chloroquine (known as “resochin” at the time) had been shelved due to the mistaken perception that it was too toxic for human use. We were surprised to find that sontochin, i.e., 3-methyl-chloroquine, retains significant activity against chloroquine-resistant strains ofPlasmodium falciparum in vitro. We prepared derivatives of sontochin, “pharmachins,” with alkyl or aryl substituents at the 3 position and with alterations to the 4-position side chain to enhance activity against drug-resistant strains. Modified with an aryl substituent in the 3 position of the 7-chloro-quinoline ring, Pharmachin 203 (PH-203) exhibits low-nanomolar 50% inhibitory concentrations (IC50s) against drug-sensitive and multidrug-resistant strains andin vivoefficacy against patent infections ofPlasmodium yoeliiin mice that is superior to chloroquine. Our findings suggest that novel 3-position aryl pharmachin derivatives have the potential for use in treating drug resistant malaria.


Sign in / Sign up

Export Citation Format

Share Document