scholarly journals Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kasopefoluwa Y. Oguntuyo ◽  
Christian S. Stevens ◽  
Chuan Tien Hung ◽  
Satoshi Ikegame ◽  
Joshua A. Acklin ◽  
...  

ABSTRACT The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glycoprotein (VSVΔG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n > 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week. IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.

Author(s):  
Kasopefoluwa Y. Oguntuyo ◽  
Christian S Stevens ◽  
Chuan-Tien Hung ◽  
Satoshi Ikegame ◽  
Joshua A. Acklin ◽  
...  

The global COVID-19 pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the SARS-CoV-2 spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous BSL3 conditions which limits high throughput screening of patient and vaccine sera. Myriad BSL-2 compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making inter-group comparisons difficult. To address these limitations, we developed a standardized VNA using VSVdeltaG-based CoV-2-S pseudotyped particles (CoV2pp) that can be robustly produced at scale and generate accurate neutralizing titers within 18 hours post-infection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S ELISA and live virus neutralizations in confirmed convalescent patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n>120). Our data show that absolute (abs) IC50, IC80, and IC90 values can be legitimately compared across diverse cohorts, highlight the substantial but consistent variability in neutralization potency across these cohorts, and support the use of absIC80 as a more meaningful metric for assessing the neutralization potency of vaccine or convalescent sera. Lastly, we used our CoV2pp in a screen to identify ultra-permissive 293T clones that stably express ACE2 or ACE2+TMPRSS2. When used in combination with our CoV2pp, we can now produce CoV2pp sufficient for 150,000 standardized VNA/week.


2021 ◽  
Author(s):  
Bastian Fischer ◽  
Christoph Lichtenberg ◽  
Lisa Mueller ◽  
Joerg Timm ◽  
Johannes Fischer ◽  
...  

The determination of anti-SARS-CoV-2 neutralizing antibodies (NAbs) is of interest in many respects. High NAb titers, for example, are the most important criterion regarding the effectiveness of convalescent plasma therapy. However, common cell culture-based NAb assays are time-consuming and feasible only in special laboratories. Our data reveal the suitability of a novel ELISA-based surrogate virus neutralization test (sVNT) to easily measure the inhibition-capability of NAbs in the plasma of COVID-19 convalescents. We propose a combined strategy to detect plasma samples with high NAb titers (≥ 1:160) reliably and to, simultaneously, reduce the risk of erroneously identifying low-titer specimens. For this approach, results of the sVNT assay are compared to and combined with those acquired from the Euroimmun anti-SARS-CoV-2 IgG assay. Both assays are appropriate for high-throughput screening in standard BSL-2 laboratories. Our measurements further show a long-lasting humoral immunity of at least 11 months after symptom onset.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nanda Kishore Routhu ◽  
Narayanaiah Cheedarla ◽  
Venkata Satish Bollimpelli ◽  
Sailaja Gangadhara ◽  
Venkata Viswanadh Edara ◽  
...  

AbstractThere is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1μg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


2019 ◽  
Author(s):  
Lihua Wang ◽  
Shijiang Mi ◽  
Rachel Madera ◽  
Llilianne Ganges ◽  
Manuel V. Borca ◽  
...  

Abstract Background: Virus neutralization test (VNT) is widely used for serological survey of classical swine fever (CSF) and efficacy evaluation of CSF vaccines. However, VNT is a time consuming procedure that requires cell culture and live virus manipulation. C-strain CSF vaccine is the most frequently used vaccine for CSF control and prevention. In this study, we presented a neutralizing monoclonal antibody (mAb) based competitive enzyme-linked immunosorbent assay (cELISA) with the emphasis on the replacement of VNT for C-strain post–vaccination monitoring. Results: One monoclonal antibody (6B211) which has potent neutralizing activity against C-strain was generated. A novel cELISA was established and optimized based on the strategy that 6B211 can compete with C-strain induced neutralizing antibodies in pig serum to bind capture antigen C-strain E2. By testing C-strain VNT negative pig sera (n=445) and C-strain VNT positive pig sera (n=70), the 6B211 based cELSIA showed 100% sensitivity (95% confidence interval: 94.87 to 100%) and 100% specificity (95% confidence interval: 100 to 100%). The C-strain antibody can be detected in pigs as early as 7 days post vaccination with the cELISA. By testing pig sera (n=139) in parallel, the cELISA showed excellent agreement (Kappa=0.957) with VNT. The inhibition rate of serum samples in the cELISA is highly correlated with their titers in VNT (r 2 =0.903, p<0.001). In addition, intra- and inter-assays of the cELISA exhibited acceptable repeatability with low coefficient of variations (CVs). Conclusions: This novel cELISA demonstrated excellent agreement and high level correlation with VNT. It is a reliable tool for sero-monitoring of C-strain vaccination campaign because it is a rapid, simple, safe and cost effective assay that can be used to monitor vaccination-induced immune response at the population level.


2022 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Chun-Yu Chen ◽  
Kuan-Ting Liu ◽  
Shin-Ru Shih ◽  
Jung-Jr Ye ◽  
Yih-Ting Chen ◽  
...  

Background: Data are lacking regarding predictors of quantification of neutralizing antibodies (nAbs) based on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 50% neutralization titer (NT50) after a single dose of COVID-19 vaccine in hemodialysis (HD) patients. Methods: This prospective single-center study enrolled 200 HD patients and 82 healthy subjects to estimate antibodies against the SARS-CoV-2 viral spike protein 1 and receptor-binding domain after a first dose of a COVID-19 vaccine (ChAdOx1 or mRNA-1273), measured by enzyme-linked immunosorbent assay and applied spline-based generalized additive model regression analysis to predict NT50 converted to international units. Results: After the first dose of ChAdOx1, multiple linear regression showed that age (p = 0.011) and cardiothoracic ratio (p = 0.002) were negatively associated with NT50. Older age (OR = 0.958, p = 0.052) and higher cardiothoracic ratio (OR < 0.001, p = 0.037) could predict negative humoral response (NT50 < 35.13 IU/mL). NT50 was lower in HD patients compared with healthy controls receiving ChAdOx1 (10.68 vs. 43.01 IU/m, p < 0.001) or mRNA-1273 (36.39 vs. 262.2 IU/mL, p < 0.001). ChAdOx1 elicited lower GMTs than mRNA-1273 in the HD cohort (10.68 vs. 36.39 IU/mL, p < 0.001) and in healthy controls (43.01 vs. 262.22 IU/mL, p < 0.001). Conclusion: High cardiothoracic ratio and old age could independently predict a decline in nAb titers in an HD cohort vaccinated with a single dose of ChAdOx1.


2017 ◽  
Vol 55 (10) ◽  
pp. 3028-3036 ◽  
Author(s):  
Chao Shan ◽  
Daniel A. Ortiz ◽  
Yujiao Yang ◽  
Susan J. Wong ◽  
Laura D. Kramer ◽  
...  

ABSTRACT Currently, the laboratory diagnosis of Zika virus (ZIKV) infection is primarily through the detection of ZIKV RNA or antibodies against ZIKV proteins. The detection of viral RNA is highly sensitive and specific, but periods of viremia and viruria are brief, limiting the utility of ZIKV RNA assays. Instead, most ZIKV infections are diagnosed serologically, using an IgM antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for screening, followed by a confirmatory plaque reduction neutralization test (PRNT). Typical turnaround times vary, due to assay incubation periods and a lack of clinical laboratories performing these tests. Recently, a novel luciferase-ZIKV- and -dengue virus (DENV)-based serological assay, which considerably improves the turnaround times and throughput for ZIKV diagnosis, was described. Using the traditional PRNT as a reference method, we evaluated the performance characteristics of the reporter virus neutralization test (RVNT) with 258 clinical serum specimens. The ZIKV RVNT produced primary ZIKV screening and secondary confirmation results in 4 days, with 100% reproducibility. As a screening assay, the ZIKV RVNT displayed excellent diagnostic accuracy, sensitivity, and specificity of 98.2%, 100%, and 98.1%, respectively. As a confirmatory assay, the ZIKV RVNT titers displayed 93.1% agreement with the traditional ZIKV PRNT titers. Overall, the RVNT accurately and reliably detects neutralizing antibodies in patient serum specimens, with improved turnaround times, and can be used for the serological detection of ZIKV infections. Due to the homogeneous 96-well format, the RVNT has also significantly improved the assay throughput to allow testing of a large number of specimens in a single run.


2020 ◽  
Vol 223 (1) ◽  
pp. 47-55 ◽  
Author(s):  
William T Lee ◽  
Roxanne C Girardin ◽  
Alan P Dupuis ◽  
Karen E Kulas ◽  
Anne F Payne ◽  
...  

Abstract Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration’s (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31–35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (&gt;960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.


2004 ◽  
Vol 11 (1) ◽  
pp. 186-194 ◽  
Author(s):  
Pratibha G. Ray ◽  
Shobhana D. Kelkar

ABSTRACT Neutralizing antibody (NAb) responses to different rotavirus serotypes were compared in 64 convalescent-phase serum samples from hospitalized rotavirus-positive children less than 2 years of age and their mothers. Compared to the child patients, the mothers showed significantly higher NAb positivity to animal rotavirus serotypes G3 simian (96.88%), G6 bovine (85.94%), and G10 bovine (25.0%) and to human rotavirus serotypes G8 (79.69%) and G3 (57.81%) (P < 0.01 for each) but not to human serotypes G1, G2, G4, and G9 (P > 0.05). The overall prevalence of NAb among the child patients was low for human rotavirus serotypes G1 (20.31%) and G3 (21.8%). The comparative NAb response in individual mother-child paired serum samples was analyzed against each rotavirus serotype. A substantial number of child patients showed higher NAb titers than their mothers to serotypes G1, G2, G4, and G9, indicating that these serotypes are the major serotypes causing rotavirus diarrhea among the children of Pune, India. In these cases, the mothers were either negative or had lower titers of NAbs than their children. Correlation was observed between the infecting serotype and child patient serum that showed a homologous NAb response at a higher level than that of the mother. It appears that when the level of NAb to a particular serotype is higher among child patients than among their mothers, that serotype is the infecting serotype, and that low titers of NAb among the mothers predispose the children to infection with that serotype, if the serotype is in circulation.


1994 ◽  
Vol 6 (4) ◽  
pp. 410-415 ◽  
Author(s):  
Eric A. Nelson ◽  
Jane Christopher-Hennings ◽  
David A. Benfield

The antibody responses of pigs to porcine reproductive and respiratory syndrome virus (isolate VR-2332) were evaluated by indirect immunofluorescence, virus neutralization, and immunoblotting. All pigs in each group were positive by indirect immunofluorescence 14-21 days postexposure (DPE), and antibodies to specific viral proteins (15, 19 or 26 kD) were initially demonstrated by immunoblotting at 7–21 days DPE. Neutralizing antibodies were detected in only 2 pigs that were inoculated intranasally and given additional parenteral injections with adjuvant. These antibodies appeared much later, 51–70 DPE, than did antibodies detected by indirect immunofluorescence. The titer of the neutralizing antibodies increased until 127 DPE, after which the titers decreased, and 1 animal became seronegative for neutralizing antibody by 262 DPE.


2021 ◽  
Author(s):  
Lu Lu ◽  
Bobo Mok ◽  
Linlei Chen ◽  
Jacky Chan ◽  
Owen Tsang ◽  
...  

Background The SARS-CoV-2 Omicron variant, designated as a Variant of Concern(VOC) by the World Health Organization, carries numerous spike protein mutations which have been found to evade neutralizing antibodies elicited by COVID-19 vaccines. The susceptibility of Omicron variant by vaccine-induced neutralizing antibodies are urgently needed for risk assessment. Methods Omicron variant strains HKU691 and HKU344-R346K were isolated from patients using TMPRSS2-overexpressing VeroE6 cells. Whole genome sequence was determined using nanopore sequencing. Neutralization susceptibility of ancestral lineage A virus and the Omicron, Delta and Beta variants to sera from 25 BNT162b2 and 25 Coronavac vaccine recipients was determined using a live virus microneutralization assay. Results The Omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains in GISAID database. Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the Omicron variant HKU691 and HKU344-R346K, respectively, while none of the Coronavac recipients had detectable neutralizing antibody titer against either Omicron isolates. For BNT162b2 recipients, the geometric mean neutralization antibody titers(GMT) of the Omicron variant isolates(5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus(229.4), and the GMT of both omicron isolates were significantly lower than those of the beta and delta variants. There was no significant difference in the GMT between HKU691 and HKU344-R346K. Conclusions Omicron variant escapes neutralizing antibodies elicited by BNT162b2 or CoronaVac. The additional R346K mutation did not affect the neutralization susceptibility. Our data suggest that the Omicron variant may be associated with lower COVID-19 vaccine effectiveness.


Sign in / Sign up

Export Citation Format

Share Document